179 research outputs found

    Cracking the social code of speech prosody using reverse correlation

    Get PDF
    Human listeners excel at forming high-level social representations about each other, even from the briefest of utterances. In particular, pitch is widely recognized as the auditory dimension that conveys most of the information about a speaker's traits, emotional states, and attitudes. While past research has primarily looked at the influence of mean pitch, almost nothing is known about how intonation patterns, i.e., finely tuned pitch trajectories around the mean, may determine social judgments in speech. Here, we introduce an experimental paradigm that combines state-of-the-art voice transformation algorithms with psychophysical reverse correlation and show that two of the most important dimensions of social judgments, a speaker's perceived dominance and trustworthiness, are driven by robust and distinguishing pitch trajectories in short utterances like the word "Hello," which remained remarkably stable whether male or female listeners judged male or female speakers. These findings reveal a unique communicative adaptation that enables listeners to infer social traits regardless of speakers' physical characteristics, such as sex and mean pitch. By characterizing how any given individual's mental representations may differ from this generic code, the method introduced here opens avenues to explore dysprosody and social-cognitive deficits in disorders like autism spectrum and schizophrenia. In addition, once derived experimentally, these prototypes can be applied to novel utterances, thus providing a principled way to modulate personality impressions in arbitrary speech signals

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    CAPT๋ฅผ ์œ„ํ•œ ๋ฐœ์Œ ๋ณ€์ด ๋ถ„์„ ๋ฐ CycleGAN ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ธ๋ฌธ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ์ง€๊ณผํ•™์ „๊ณต,2020. 2. ์ •๋ฏผํ™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.์™ธ๊ตญ์–ด๋กœ์„œ์˜ ํ•œ๊ตญ์–ด ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ณ ์กฐ๋˜์–ด ํ•œ๊ตญ์–ด ํ•™์Šต์ž์˜ ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์Œ์„ฑ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐœ์Œ ๊ต์œก(Computer-Assisted Pronunciation Training; CAPT) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์กดํ•˜๋Š” ํ•œ๊ตญ์–ด ๋งํ•˜๊ธฐ ๊ต์œก ์‹œ์Šคํ…œ์€ ์™ธ๊ตญ์ธ์˜ ํ•œ๊ตญ์–ด์— ๋Œ€ํ•œ ์–ธ์–ดํ•™์  ํŠน์ง•์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ตœ์‹  ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ๋˜ํ•œ ์ ์šฉ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ฐ€๋Šฅํ•œ ์›์ธ์œผ๋กœ์จ๋Š” ์™ธ๊ตญ์ธ ๋ฐœํ™” ํ•œ๊ตญ์–ด ํ˜„์ƒ์— ๋Œ€ํ•œ ๋ถ„์„์ด ์ถฉ๋ถ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๊ทธ๋ฆฌ๊ณ  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด๋„ ์ด๋ฅผ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์— ๋ฐ˜์˜ํ•˜๊ธฐ์—๋Š” ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CAPT ๊ธฐ์ˆ  ์ „๋ฐ˜์ ์œผ๋กœ๋Š” ์‹ ํ˜ธ์ฒ˜๋ฆฌ, ์šด์œจ ๋ถ„์„, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ๊ฐ™์€ ํŠน์ง• ์ถ”์ถœ์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด์„œ ์ ํ•ฉํ•œ ํŠน์ง•์„ ์ฐพ๊ณ  ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•˜๋Š” ๋ฐ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ์ด๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ณผ์ • ๋˜ํ•œ ๋ฐœ์ „์˜ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ๋ฐ”๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € CAPT ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ๋ฐœ์Œ ๋ณ€์ด ์–‘์ƒ๊ณผ ์–ธ์–ดํ•™์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ๊ณผ ํ•œ๊ตญ์–ด ์›์–ด๋ฏผ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ์„ ๋Œ€์กฐํ•˜๊ณ  ์ฃผ์š”ํ•œ ๋ณ€์ด๋ฅผ ํ™•์ธํ•œ ํ›„, ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์˜์‚ฌ์†Œํ†ต์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ข…์„ฑ ์‚ญ์ œ์™€ 3์ค‘ ๋Œ€๋ฆฝ์˜ ํ˜ผ๋™, ์ดˆ๋ถ„์ ˆ ๊ด€๋ จ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ์— ์šฐ์„ ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ต์ •๋œ ํ”ผ๋“œ๋ฐฑ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ CAPT ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๊ณผ์ œ๊ฐ€ ๋ฐœํ™”์˜ ์Šคํƒ€์ผ ๋ณ€ํ™”์˜ ๋ฌธ์ œ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์•˜์œผ๋ฉฐ, ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง (Cycle-consistent Generative Adversarial Network; CycleGAN) ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. GAN ๋„คํŠธ์›Œํฌ์˜ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋น„์›์–ด๋ฏผ ๋ฐœํ™”์˜ ๋ถ„ํฌ์™€ ์›์–ด๋ฏผ ๋ฐœํ™” ๋ถ„ํฌ์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋ฉฐ, Cycle consistency ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœํ™”๊ฐ„ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ๊ณผ ๋™์‹œ์— ๊ณผ๋„ํ•œ ๊ต์ •์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. ๋ณ„๋„์˜ ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์ด ์—†์ด ํ•„์š”ํ•œ ํŠน์ง•๋“ค์ด CycleGAN ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฌด๊ฐ๋… ๋ฐฉ๋ฒ•์œผ๋กœ ์Šค์Šค๋กœ ํ•™์Šต๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์–ธ์–ด ํ™•์žฅ์ด ์šฉ์ดํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์–ธ์–ดํ•™์  ๋ถ„์„์—์„œ ๋“œ๋Ÿฌ๋‚œ ์ฃผ์š”ํ•œ ๋ณ€์ด๋“ค ๊ฐ„์˜ ์šฐ์„ ์ˆœ์œ„๋Š” Auxiliary Classifier CycleGAN ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ CycleGAN์— ์ง€์‹์„ ์ ‘๋ชฉ์‹œ์ผœ ํ”ผ๋“œ๋ฐฑ ์Œ์„ฑ์„ ์ƒ์„ฑํ•จ๊ณผ ๋™์‹œ์— ํ•ด๋‹น ํ”ผ๋“œ๋ฐฑ์ด ์–ด๋–ค ์œ ํ˜•์˜ ์˜ค๋ฅ˜์ธ์ง€ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ ์ง€์‹์ด ๊ต์ • ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค๋Š” ๋ฐ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ 27๊ฐœ์˜ ๋ชจ๊ตญ์–ด๋ฅผ ๊ฐ–๋Š” 217๋ช…์˜ ์œ ์˜๋ฏธ ์–ดํœ˜ ๋ฐœํ™” 65,100๊ฐœ๋กœ ํ”ผ๋“œ๋ฐฑ ์ž๋™ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ฐœ์„  ์—ฌ๋ถ€ ๋ฐ ์ •๋„์— ๋Œ€ํ•œ ์ง€๊ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ํ•™์Šต์ž ๋ณธ์ธ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ ์ฑ„ ๊ต์ •๋œ ๋ฐœ์Œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ธ ์Œ๋†’์ด ๋™๊ธฐ์‹ ์ค‘์ฒฉ๊ฐ€์‚ฐ (Pitch-Synchronous Overlap-and-Add) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ƒ๋Œ€ ๊ฐœ์„ ๋ฅ  16.67%์ด ํ™•์ธ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participantsโ€™ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning ยฉ 2012 Acoustical Society of Americapublished_or_final_versio

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    A Sound Approach to Language Matters: In Honor of Ocke-Schwen Bohn

    Get PDF
    The contributions in this Festschrift were written by Ockeโ€™s current and former PhD-students, colleagues and research collaborators. The Festschrift is divided into six sections, moving from the smallest building blocks of language, through gradually expanding objects of linguistic inquiry to the highest levels of description - all of which have formed a part of Ockeโ€™s career, in connection with his teaching and/or his academic productions: โ€œSegmentsโ€, โ€œPerception of Accentโ€, โ€œBetween Sounds and Graphemesโ€, โ€œProsodyโ€, โ€œMorphology and Syntaxโ€ and โ€œSecond Language Acquisitionโ€.ย Each one of these illustrates a sound approach to language matters
    • โ€ฆ
    corecore