153 research outputs found

    Spectral and Energy Efficiency of Uplink D2D Underlaid Massive MIMO Cellular Networks

    Get PDF
    CCBY One of key 5G scenarios is that device-to-device (D2D) and massive multiple-input multiple-output (MIMO) will be co-existed. However, interference in the uplink D2D underlaid massive MIMO cellular networks needs to be coordinated, due to the vast cellular and D2D transmissions. To this end, this paper introduces a spatially dynamic power control solution for mitigating the cellular-to-D2D and D2D-to-cellular interference. In particular, the proposed D2D power control policy is rather flexible including the special cases of no D2D links or using maximum transmit power. Under the considered power control, an analytical approach is developed to evaluate the spectral efficiency (SE) and energy efficiency (EE) in such networks. Thus, the exact expressions of SE for a cellular user or D2D transmitter are derived, which quantify the impacts of key system parameters such as massive MIMO antennas and D2D density. Moreover, the D2D scale properties are obtained, which provide the sufficient conditions for achieving the anticipated SE. Numerical results corroborate our analysis and show that the proposed power control solution can efficiently mitigate interference between the cellular and D2D tier. The results demonstrate that there exists the optimal D2D density for maximizing the area SE of D2D tier. In addition, the achievable EE of a cellular user can be comparable to that of a D2D user

    An Exclusion zone for Massive MIMO With Underlay D2D Communication

    Full text link
    Fifth generation networks will incorporate a variety of new features in wireless networks such as data offloading, D2D communication, and Massive MIMO. Massive MIMO is specially appealing since it achieves huge gains while enabling simple processing like MRC receivers. It suffers, though, from a major shortcoming refereed to as pilot contamination. In this paper we propose a frame-work in which, a D2D underlaid Massive MIMO system is implemented and we will prove that this scheme can reduce the pilot contamination problem while enabling an optimization of the system spectral efficiency. The D2D communication will help maintain the network coverage while allowing a better channel estimation to be performed

    Energy Efficiency and Sum Rate when Massive MIMO meets Device-to-Device Communication

    Full text link
    This paper considers a scenario of short-range communication, known as device-to-device (D2D) communication, where D2D users reuse the downlink resources of a cellular network to transmit directly to their corresponding receivers. In addition, multiple antennas at the base station (BS) are used in order to simultaneously support multiple cellular users using multiuser or massive MIMO. The network model considers a fixed number of cellular users and that D2D users are distributed according to a homogeneous Poisson point process (PPP). Two metrics are studied, namely, average sum rate (ASR) and energy efficiency (EE). We derive tractable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas and density of D2D users for a given coverage area.Comment: 6 pages, 7 figures, to be presented at the IEEE International Conference on Communications (ICC) Workshop on Device-to-Device Communication for Cellular and Wireless Networks, London, UK, June 201

    Power Control for D2D Underlay in Multi-cell Massive MIMO Networks

    Full text link
    This paper proposes a new power control and pilot allocation scheme for device-to-device (D2D) communication underlaying a multi-cell massive MIMO system. In this scheme, the cellular users in each cell get orthogonal pilots which are reused with reuse factor one across cells, while the D2D pairs share another set of orthogonal pilots. We derive a closed-form capacity lower bound for the cellular users with different receive processing schemes. In addition, we derive a capacity lower bound for the D2D receivers and a closed-form approximation of it. Then we provide a power control algorithm that maximizes the minimum spectral efficiency (SE) of the users in the network. Finally, we provide a numerical evaluation where we compare our proposed power control algorithm with the maximum transmit power case and the case of conventional multi-cell massive MIMO without D2D communication. Based on the provided results, we conclude that our proposed scheme increases the sum spectral efficiency of multi-cell massive MIMO networks.Comment: 6 Pages, 3 Figures, WSA 201

    Energy Efficiency and Sum Rate Tradeoffs for Massive MIMO Systems with Underlaid Device-to-Device Communications

    Full text link
    In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.Comment: 30 pages, 10 figures, Submitte
    corecore