26 research outputs found

    A Novel System and Image Processing for Improving 3D Ultrasound-guided Interventional Cancer Procedures

    Get PDF
    Image-guided medical interventions are diagnostic and therapeutic procedures that focus on minimizing surgical incisions for improving disease management and reducing patient burden relative to conventional techniques. Interventional approaches, such as biopsy, brachytherapy, and ablation procedures, have been used in the management of cancer for many anatomical regions, including the prostate and liver. Needles and needle-like tools are often used for achieving planned clinical outcomes, but the increased dependency on accurate targeting, guidance, and verification can limit the widespread adoption and clinical scope of these procedures. Image-guided interventions that incorporate 3D information intraoperatively have been shown to improve the accuracy and feasibility of these procedures, but clinical needs still exist for improving workflow and reducing physician variability with widely applicable cost-conscience approaches. The objective of this thesis was to incorporate 3D ultrasound (US) imaging and image processing methods during image-guided cancer interventions in the prostate and liver to provide accessible, fast, and accurate approaches for clinical improvements. An automatic 2D-3D transrectal ultrasound (TRUS) registration algorithm was optimized and implemented in a 3D TRUS-guided system to provide continuous prostate motion corrections with sub-millimeter and sub-degree error in 36 ± 4 ms. An automatic and generalizable 3D TRUS prostate segmentation method was developed on a diverse clinical dataset of patient images from biopsy and brachytherapy procedures, resulting in errors at gold standard accuracy with a computation time of 0.62 s. After validation of mechanical and image reconstruction accuracy, a novel 3D US system for focal liver tumor therapy was developed to guide therapy applicators with 4.27 ± 2.47 mm error. The verification of applicators post-insertion motivated the development of a 3D US applicator segmentation approach, which was demonstrated to provide clinically feasible assessments in 0.246 ± 0.007 s. Lastly, a general needle and applicator tool segmentation algorithm was developed to provide accurate intraoperative and real-time insertion feedback for multiple anatomical locations during a variety of clinical interventional procedures. Clinical translation of these developed approaches has the potential to extend the overall patient quality of life and outcomes by improving detection rates and reducing local cancer recurrence in patients with prostate and liver cancer

    Across frequency processes involved in auditory detection of coloration

    Get PDF

    Amplitude modulation depth discrimination in hearing-impaired and normal-hearing listeners

    Get PDF

    Cross-spectral synergy and consonant identification (A)

    Get PDF
    corecore