1,670 research outputs found

    Drawing Big Graphs using Spectral Sparsification

    Full text link
    Spectral sparsification is a general technique developed by Spielman et al. to reduce the number of edges in a graph while retaining its structural properties. We investigate the use of spectral sparsification to produce good visual representations of big graphs. We evaluate spectral sparsification approaches on real-world and synthetic graphs. We show that spectral sparsifiers are more effective than random edge sampling. Our results lead to guidelines for using spectral sparsification in big graph visualization.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time

    Full text link
    We present the first almost-linear time algorithm for constructing linear-sized spectral sparsification for graphs. This improves all previous constructions of linear-sized spectral sparsification, which requires Ω(n2)\Omega(n^2) time. A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing spectral sparsification: Random sampling by effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    New Notions and Constructions of Sparsification for Graphs and Hypergraphs

    Get PDF
    A sparsifier of a graph GG (Bencz\'ur and Karger; Spielman and Teng) is a sparse weighted subgraph G~\tilde G that approximately retains the cut structure of GG. For general graphs, non-trivial sparsification is possible only by using weighted graphs in which different edges have different weights. Even for graphs that admit unweighted sparsifiers, there are no known polynomial time algorithms that find such unweighted sparsifiers. We study a weaker notion of sparsification suggested by Oveis Gharan, in which the number of edges in each cut (S,Sˉ)(S,\bar S) is not approximated within a multiplicative factor (1+ϵ)(1+\epsilon), but is, instead, approximated up to an additive term bounded by ϵ\epsilon times dS+vol(S)d\cdot |S| + \text{vol}(S), where dd is the average degree, and vol(S)\text{vol}(S) is the sum of the degrees of the vertices in SS. We provide a probabilistic polynomial time construction of such sparsifiers for every graph, and our sparsifiers have a near-optimal number of edges O(ϵ2npolylog(1/ϵ))O(\epsilon^{-2} n {\rm polylog}(1/\epsilon)). We also provide a deterministic polynomial time construction that constructs sparsifiers with a weaker property having the optimal number of edges O(ϵ2n)O(\epsilon^{-2} n). Our constructions also satisfy a spectral version of the ``additive sparsification'' property. Our construction of ``additive sparsifiers'' with Oϵ(n)O_\epsilon (n) edges also works for hypergraphs, and provides the first non-trivial notion of sparsification for hypergraphs achievable with O(n)O(n) hyperedges when ϵ\epsilon and the rank rr of the hyperedges are constant. Finally, we provide a new construction of spectral hypergraph sparsifiers, according to the standard definition, with poly(ϵ1,r)nlogn{\rm poly}(\epsilon^{-1},r)\cdot n\log n hyperedges, improving over the previous spectral construction (Soma and Yoshida) that used O~(n3)\tilde O(n^3) hyperedges even for constant rr and ϵ\epsilon.Comment: 31 page

    Similarity-Aware Spectral Sparsification by Edge Filtering

    Full text link
    In recent years, spectral graph sparsification techniques that can compute ultra-sparse graph proxies have been extensively studied for accelerating various numerical and graph-related applications. Prior nearly-linear-time spectral sparsification methods first extract low-stretch spanning tree from the original graph to form the backbone of the sparsifier, and then recover small portions of spectrally-critical off-tree edges to the spanning tree to significantly improve the approximation quality. However, it is not clear how many off-tree edges should be recovered for achieving a desired spectral similarity level within the sparsifier. Motivated by recent graph signal processing techniques, this paper proposes a similarity-aware spectral graph sparsification framework that leverages efficient spectral off-tree edge embedding and filtering schemes to construct spectral sparsifiers with guaranteed spectral similarity (relative condition number) level. An iterative graph densification scheme is introduced to facilitate efficient and effective filtering of off-tree edges for highly ill-conditioned problems. The proposed method has been validated using various kinds of graphs obtained from public domain sparse matrix collections relevant to VLSI CAD, finite element analysis, as well as social and data networks frequently studied in many machine learning and data mining applications
    corecore