2,641 research outputs found

    The Fermionic Signature Operator and Quantum States in Rindler Space-Time

    Get PDF
    The fermionic signature operator is constructed in Rindler space-time. It is shown to be an unbounded self-adjoint operator on the Hilbert space of solutions of the massive Dirac equation. In two-dimensional Rindler space-time, we prove that the resulting fermionic projector state coincides with the Fulling-Rindler vacuum. Moreover, the fermionic signature operator gives a covariant construction of general thermal states, in particular of the Unruh state. The fermionic signature operator is shown to be well-defined in asymptotically Rindler space-times. In four-dimensional Rindler space-time, our construction gives rise to new quantum states.Comment: 27 pages, LaTeX, more details on self-adjoint extension (published version

    Fractal Weyl laws in discrete models of chaotic scattering

    Get PDF
    We analyze simple models of quantum chaotic scattering, namely quantized open baker's maps. We numerically compute the density of quantum resonances in the semiclassical r\'{e}gime. This density satisfies a fractal Weyl law, where the exponent is governed by the (fractal) dimension of the set of trapped trajectories. This type of behaviour is also expected in the (physically more relevant) case of Hamiltonian chaotic scattering. Within a simplified model, we are able to rigorously prove this Weyl law, and compute quantities related to the "coherent transport" through the system, namely the conductance and "shot noise". The latter is close to the prediction of random matrix theory.Comment: Invited article in the Special Issue of Journal of Physics A on "Trends in Quantum Chaotic Scattering

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data

    Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Sampling and Reconstruction of Graph Signals via Weak Submodularity and Semidefinite Relaxation

    Full text link
    We study the problem of sampling a bandlimited graph signal in the presence of noise, where the objective is to select a node subset of prescribed cardinality that minimizes the signal reconstruction mean squared error (MSE). To that end, we formulate the task at hand as the minimization of MSE subject to binary constraints, and approximate the resulting NP-hard problem via semidefinite programming (SDP) relaxation. Moreover, we provide an alternative formulation based on maximizing a monotone weak submodular function and propose a randomized-greedy algorithm to find a sub-optimal subset. We then derive a worst-case performance guarantee on the MSE returned by the randomized greedy algorithm for general non-stationary graph signals. The efficacy of the proposed methods is illustrated through numerical simulations on synthetic and real-world graphs. Notably, the randomized greedy algorithm yields an order-of-magnitude speedup over state-of-the-art greedy sampling schemes, while incurring only a marginal MSE performance loss
    corecore