74 research outputs found

    Design methodologies for built-in testing of integrated RF transceivers with the on-chip loopback technique

    Get PDF
    Advances toward increased integration and complexity of radio frequency (RF) andmixed-signal integrated circuits reduce the effectiveness of contemporary testmethodologies and result in a rising cost of testing. The focus in this research is on thecircuit-level implementation of alternative test strategies for integrated wirelesstransceivers with the aim to lower test cost by eliminating the need for expensive RFequipment during production testing.The first circuit proposed in this thesis closes the signal path between the transmitterand receiver sections of integrated transceivers in test mode for bit error rate analysis atlow frequencies. Furthermore, the output power of this on-chip loopback block wasmade variable with the goal to allow gain and 1-dB compression point determination forthe RF front-end circuits with on-chip power detectors. The loopback block is intendedfor transceivers operating in the 1.9-2.4GHz range and it can compensate for transmitterreceiveroffset frequency differences from 40MHz to 200MHz. The measuredattenuation range of the 0.052mm2 loopback circuit in 0.13µm CMOS technology was 26-41dB with continuous control, but post-layout simulation results indicate that theattenuation range can be reduced to 11-27dB via optimizations.Another circuit presented in this thesis is a current generator for built-in testing ofimpedance-matched RF front-end circuits with current injection. Since this circuit hashigh output impedance (>1k up to 2.4GHz), it does not influence the input matchingnetwork of the low-noise amplifier (LNA) under test. A major advantage of the currentinjection method over the typical voltage-mode approach is that the built-in test canexpose fabrication defects in components of the matching network in addition to on-chipdevices. The current generator was employed together with two power detectors in arealization of a built-in test for a LNA with 14% layout area overhead in 0.13µm CMOStechnology (<1.5% for the 0.002mm2 current generator). The post-layout simulationresults showed that the LNA gain (S21) estimation with the external matching networkwas within 3.5% of the actual gain in the presence of process-voltage-temperaturevariations and power detector imprecision

    Built-in-self-test of RF front-end circuitry

    Get PDF
    Fuelled by the ever increasing demand for wireless products and the advent of deep submicron CMOS, RF ICs have become fairly commonplace in the semiconductor market. This has given rise to a new breed of Systems-On-Chip (SOCs) with RF front-ends tightly integrated along with digital, analog and mixed signal circuitry. However, the reliability of the integrated RF front-end continues to be a matter of significant concern and considerable research. A major challenge to the reliability of RF ICs is the fact that their performance is also severely degraded by wide tolerances in on-chip passives and package parasitics, in addition to process related faults. Due to the absence of contact based testing solutions in embedded RF SOCs (because the very act of probing may affect the performance of the RF circuit), coupled with the presence of very few test access nodes, a Built In Self Test approach (BiST) may prove to be the most efficient test scheme. However due to the associated challenges, a comprehensive and low-overhead BiST methodology for on-chip testing of RF ICs has not yet been reported in literature. In the current work, an approach to RF self-test that has hitherto been unexplored both in literature and in the commercial arena is proposed. A sensitive current monitor has been used to extract variations in the supply current drawn by the circuit-under-test (CUT). These variations are then processed in time and frequency domain to develop signatures. The acquired signatures can then be mapped to specific behavioral anomalies and the locations of these anomalies. The CUT is first excited by simple test inputs that can be generated on-chip. The current monitor extracts the corresponding variations in the supply current of the CUT, thereby creating signatures that map to various performance metrics of the circuit. These signatures can then be post-processed by low overhead on-chip circuitry and converted into an accessible form. To be successful in the RF domain any BIST architecture must be minimally invasive, reliable, offer good fault coverage and present low real estate and power overheads. The current-based self-test approach successfully addresses all these concerns. The technique has been applied to RF Low Noise Amplifiers, Mixers and Voltage Controlled Oscillators. The circuitry and post-processing techniques have also been demonstrated in silicon (using the IBM 0.25 micron RF CMOS process). The entire self-test of the RF front-end can be accomplished with a total test time of approximately 30µs, which is several orders of magnitude better than existing commercial test schemes

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Low-Overhead Built-In Self-Test for Advanced RF Transceiver Architectures

    Get PDF
    abstract: Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope and phase signals and the finite envelope bandwidth can create intermodulation distortion (IMD) that leads to violation of spectral mask requirements. Characterization and calibration of these parameters with analytical model would reduce the test time and cost considerably. Hence, a technique to measure and calibrate impairments of the polar transceiver in the loop-back mode is proposed. Secondly, robust amplitude measurement technique for RF BIST application and BIST circuits for loop-back connection are discussed. Test techniques using analytical model are explained and BIST circuits are introduced. Next, a self-compensating built-in self-test solution for RF Phased Array Mismatch is proposed. In the proposed method, a sinusoidal test signal with unknown amplitude is applied to the inputs of two adjacent phased array elements and measure the baseband output signal after down-conversion. Mathematical modeling of the circuit impairments and phased array behavior indicates that by using two distinct input amplitudes, both of which can remain unknown, it is possible to measure the important parameters of the phased array, such as gain and phase mismatch. In addition, proposed BIST system is designed and fabricated using IBM 180nm process and a prototype four-element phased-array PCB is also designed and fabricated for verifying the proposed method. Finally, process independent gain measurement via BIST/DUT co-design is explained. Design methodology how to reduce performance impact significantly is discussed. Simulation and hardware measurements results for the proposed techniques show that the proposed technique can characterize the targeted impairments accurately.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Solutions pour l'auto-adaptation des systèmes sans fil

    Get PDF
    The current demand on ubiquitous connectivity imposes stringent requirements on the fabrication of Radio-Frequency (RF) circuits. Designs are consequently transferred to the most advanced CMOS technologies that were initially introduced to improve digital performance. In addition, as technology scales down, RF circuits are more and more susceptible to a lot of variations during their lifetime, as manufacturing process variability, temperature, environmental conditions, aging… As a result, the usual worst-case circuit design is leading to sub-optimal conditions, in terms of power and/or performance most of the time for the circuit. In order to counteract these variations, increasing the performances and also reduce power consumption, adaptation strategies must be put in place.More importantly, the fabrication process introduces more and more performance variability, which can have a dramatic impact on the fabrication yield. That is why RF designs are not easily fabricated in the most advanced CMOS technologies, as 32nm or 22nm nodes for instance. In this context, the performances of RF circuits need to be calibrated after fabrication so as to take these variations into account and recover yield loss.This thesis work is presenting on a post-fabrication calibration technique for RF circuits. This technique is performed during production testing with minimum extra cost, which is critical since the cost of test can be comparable to the cost of fabrication concerning RF circuits and cannot be further raised. Calibration is enabled by equipping the circuit with tuning knobs and sensors. Optimal tuning knob identification is achieved in one-shot based on a single test step that involves measuring the sensor outputs once. For this purpose, we rely on variation-aware sensors which provide measurements that remain invariant under tuning knob changes. As an auxiliary benefit, the variation-aware sensors are non-intrusive and totally transparent to the circuit.Our proposed methodology has first been demonstrated with simulation data with an RF power amplifier as a case study. Afterwards, a silicon demonstrator has then been fabricated in a 65nm technology in order to fully demonstrate the methodology. The fabricated dataset of circuits is extracted from typical and corner wafers. This feature is very important since corner circuits are the worst design cases and therefore the most difficult to calibrate. In our case, corner circuits represent more than the two third of the overall dataset and the calibration can still be proven. In details, fabrication yield based on 3 sigma performance specifications is increased from 21% to 93%. This is a major performance of the technique, knowing that worst case circuits are very rare in industrial fabrication.La demande courante de connectivité instantanée impose un cahier des charges très strict sur la fabrication des circuits Radio-Fréquences (RF). Les circuits doivent donc être transférées vers les technologies les plus avancées, initialement introduites pour augmenter les performances des circuits purement numériques. De plus, les circuits RF sont soumis à de plus en plus de variations et cette sensibilité s’accroît avec l’avancées des technologies. Ces variations sont par exemple les variations du procédé de fabrication, la température, l’environnement, le vieillissement… Par conséquent, la méthode classique de conception de circuits “pire-cas” conduit à une utilisation non-optimale du circuit dans la vaste majorité des conditions, en termes de performances et/ou de consommation. Ces variations doivent donc être compensées, en utilisant des techniques d’adaptation.De manière plus importante encore, le procédé de fabrication des circuits introduit de plus en plus de variabilité dans les performances des circuits, ce qui a un impact important sur le rendement de fabrication des circuits. Pour cette raison, les circuits RF sont difficilement fabriqués dans les technologies CMOS les plus avancées comme les nœuds 32nm ou 22nm. Dans ce contexte, les performances des circuits RF doivent êtres calibrées après fabrication pour prendre en compte ces variations et retrouver un haut rendement de fabrication.Ce travail de these présente une méthode de calibration post-fabrication pour les circuits RF. Cette méthodologie est appliquée pendant le test de production en ajoutant un minimum de coût, ce qui est un point essentiel car le coût du test est aujourd’hui déjà comparable au coût de fabrication d’un circuit RF et ne peut être augmenté d’avantage. Par ailleurs, la puissance consommée est aussi prise en compte pour que l’impact de la calibration sur la consommation soit minimisé. La calibration est rendue possible en équipant le circuit avec des nœuds de réglages et des capteurs. L’identification de la valeur de réglage optimale du circuit est obtenue en un seul coup, en testant les performances RF une seule et unique fois. Cela est possible grâce à l’utilisation de capteurs de variations du procédé de fabrication qui sont invariants par rapport aux changements des nœuds de réglage. Un autre benefice de l’utilisation de ces capteurs de variation sont non-intrusifs et donc totalement transparents pour le circuit sous test. La technique de calibration a été démontrée sur un amplificateur de puissance RF utilisé comme cas d’étude. Une première preuve de concept est développée en utilisant des résultats de simulation.Un démonstrateur en silicium a ensuite été fabriqué en technologie 65nm pour entièrement démontrer le concept de calibration. L’ensemble des puces fabriquées a été extrait de trois types de wafer différents, avec des transistors aux performances lentes, typiques et rapides. Cette caractéristique est très importante car elle nous permet de considérer des cas de procédé de fabrication extrêmes qui sont les plus difficiles à calibrer. Dans notre cas, ces circuits représentent plus des deux tiers des puces à disposition et nous pouvons quand même prouver notre concept de calibration. Dans le détails, le rendement de fabrication passe de 21% avant calibration à plus de 93% après avoir appliqué notre méthodologie. Cela constitue une performance majeure de notre méthodologie car les circuits extrêmes sont très rares dans une fabrication industrielle

    Design Techniques of Parallel Accelerator Architectures for Real-Time Processing of Learning Algorithms

    Get PDF
    H παρούσα διδακτορική διατριβή έχει ως βασικό αντικείμενο μελέτης τα Συνελικτικά Νευρωνικά Δίκτυα (Convolutional Neural Networks - CNNs) για εφαρμογές υπολογιστικής όρασης (computer vision) και συγκεκριμένα εστιάζει στην εκτέλεση της διαδικασίας της εξαγωγής συμπερασμάτων των CNNs (CNN inference) σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές της υπολογιστικής των παρυφών (edge computing). Ο σκοπός της διατριβής είναι να αντιμετωπίσει τις τρέχουσες προκλήσεις σχετικά με τη βελτιστοποίηση των CNNs προκειμένου αυτά να υλοποιηθούν σε edge computing πλατφόρμες, καθώς και τις προκλήσεις στο πεδίο των τεχνικών σχεδίασης αρχιτεκτονικών επιταχυντών για CNNs. Προς αυτή την κατεύθυνση, η παρούσα διατριβή επικεντρώνεται σε διαφορετικές εφαρμογές βαθιάς μάθησης (deep learning), συμπεριλαμβανομένης της επεξεργασίας εικόνων σε δορυφόρους και της πρόβλεψης ηλιακής ακτινοβολίας από εικόνες. Στις παραπάνω εφαρμογές, η διατριβή συμβάλλει σε τέσσερα διακριτά προβλήματα στα πεδία της βελτιστοποίησης CNNs και της σχεδίασης επιταχυντών CNNs. Αρχικά, η διατριβή συνεισφέρει στην υπάρχουσα βιβλιογραφία σχετικά με τεχνικές επεξεργασίας εικόνας, βασισμένες στα CNNs, για την εκτίμηση και πρόβλεψη ηλιακής ακτινοβολίας. Στα πλαίσια της διατριβής, προτείνεται μια μέθοδος επεξεργασίας εικόνας η οποία βασίζεται στον ακριβή εντοπισμό του Ήλιου σε εικόνες του ουρανού, χρησιμοποιώντας τις συντεταγμένες του Ήλιου και τις εξισώσεις του fisheye φακού της κάμερας λήψης εικόνων του ουρανού. Όταν η προτεινόμενη μέθοδος εφαρμόζεται σε φωτογραφίες του ουρανού πριν από την επεξεργασία τους από τα CNNs, τα αποτελέσματα από την εκτεταμένη μελέτη που διενεργεί η διατριβή, δείχνουν πως μπορεί να βελτιώσει την ακρίβεια των τιμών ακτινοβολίας που παράγουν τα CNNs σε όλες τις περιπτώσεις και με μικρή μόνο αύξηση στο πλήθος των υπολογισμών των CNNs. Στη συνέχεια, η διδακτορική διατριβή επικεντρώνεται στην κατάτμηση εικόνων βασισμένη στη βαθιά μάθηση, με στόχο τον εντοπισμό σύννεφων από δορυφορικές εικόνες σε εφαρμογές επεξεργασίας δεδομένων σε δορυφόρους. Πιο συγκεκριμένα, στα πλαίσια της διατριβής προτείνεται μια αρχιτεκτονική μοντέλου CNN περιορισμένων υπολογιστικών απαιτήσεων, βασισμένη στην αρχιτεκτονική U-Net, η οποία στοχεύει σε μια βελτιωμένη αναλογία ανάμεσα στο μέγεθος του μοντέλου και στις επιδόσεις του στη δυαδική κατάτμηση της εικόνας. Το προτεινόμενο μοντέλο εκμεταλλεύεται πλήθος τεχνικών CNNs προκειμένου να μειώσει το πλήθος των παραμέτρων και πράξεων που απαιτείται για την εκτέλεση του μοντέλου, αλλά ταυτόχρονα να πετυχαίνει ικανοποιητική ακρίβεια αποτελεσμάτων. Η διατριβή διενεργεί μια μελέτη ανάμεσα σε CNN μοντέλα της βιβλιογραφίας για εντοπισμό σύννεφων που έχουν αξιολογηθεί στα ίδια δεδομένα με το προτεινόμενο μοντέλο, και έτσι αναδεικνύει τα προτερήματά του. Επιπλέον, η διδακτορική διατριβή στοχεύει στην αποδοτική υλοποίηση του inference των CNNs επεξεργασίας εικόνας σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρμογές edge computing. Για τον σκοπό αυτό, η διατριβή επιλέγει τα Field-Programmable Gate Arrays (FPGAs) για την επιτάχυνση των CNNs και συνεισφέρει τις λεπτομέρειες της μεθοδολογίας ανάπτυξης που υιοθετήθηκε και η οποία βασίζεται στο εργαλείο Xilinx Vitis AI. Πέρα από τη μελέτη των δυνατοτήτων του Vitis AI, όπως των προχωρημένων τεχνικών κβάντισης των μοντέλων, η διατριβή παρουσιάζει επιπλέον και μια προσέγγιση επιτάχυνσης για την επιτάχυνση των επιμέρους διεργασιών μιας ολοκληρωμένης εργασίας μηχανικής όρασης η οποία εκμεταλλεύεται τους ετερογενείς πόρους του FPGA. Τα αποτελέσματα χρόνων εκτέλεσης και διεκπεραιωτικότητας (throughput) των CNNs τόσο για τη δυαδική κατάτμηση εικόνων για εντοπισμό σύννεφων όσο και για την εκτίμηση ηλιακής ακτινοβολίας από εικόνες, στο FPGA, αναδεικνύουν τις δυνατότητες επεξεργασίας σε πραγματικό χρόνο του επιταχυντή. Τέλος, η διδακτορική διατριβή συνεισφέρει τη σχεδίαση ενός συστήματος διεπαφής, υψηλών επιδόσεων και με ανοχή στα σφάλματα, για την αμφίδρομη μεταφορά εικόνων ανάμεσα σε ενσωματωμένους επιταχυντές βαθιάς μάθησης, στα πλαίσια υπολογιστικών αρχιτεκτονικών για επεξεργασία δεδομένων σε δορυφόρους. Το σύστημα διεπαφής αναπτύχθηκε για την επικοινωνία ανάμεσα σε ένα FPGA και τον επιταχυντή Intel Movidius Myriad 2 και η εκτεταμένη διαδικασία επαλήθευσης του συστήματος, τόσο σε εμπορικά διαθέσιμες όσο και σε πρωτότυπες πλατφόρμες, έδειξε πως αυτό μπορεί να επιτύχει μέχρι και 2.4 Gbps αμφίδρομους ρυθμούς μετάδοσης δεδομένων εικόνων.The current doctoral thesis focuses on Convolutional Neural Networks (CNNs) for computer vision applications and particularly on the deployment of the inference process of CNNs to embedded accelerators suitable for edge computing. The objective of the thesis is to address several challenges regarding the optimization techniques of CNNs towards their edge deployment as well as challenges in the field of CNN accelerator architectures design techniques. In this direction, the thesis focuses on different deep learning applications, including on-board payload data processing as well as solar irradiance forecasting, and makes distinct contributions to four different challenges in the fields of CNN optimization and CNN accelerators design. First, the thesis contributes to the existing literature regarding image processing techniques and deep learning-based image regression for solar irradiance estimation and forecasting. It proposes an image processing method which is based on accurate sun localization in sky images and which utilizes the solar angles and the mapping functions of the lens of the sky imager camera. When the proposed method is applied to the sky images before these are processed by the image regression CNNs, the results from the extensive study that the thesis conducts, show that the method can improve the accuracy of the irradiance values that the CNNs produce in all cases by introducing only minimal computational overhead. Next, the thesis focuses on the task of deep learning-based semantic segmentation in order to enable cloud detection from satellite imagery in on-board payload data processing applications. In particular, the thesis proposes a lightweight CNN model architecture, based on the U-Net architecture, which aims at providing an improved trade-off between model size and binary semantic segmentation performance. The proposed model utilizes several CNN techniques in order to reduce the number of parameters and operations required for the inference but at the same time maintain satisfying performance. The thesis conducts a study among CNN models for cloud detection, which are evaluated on the same test dataset as the proposed model, and thus showcases the advantages of the proposed model. Then, the thesis targets the efficient porting of the inference process of image processing CNNs to edge-oriented embedded accelerator devices. The thesis opts for CNN acceleration based on Field-Programmable Gate Arrays (FPGAs) and contributes the adopted development flow which utilizes the Xilinx Vitis AI framework. Apart from exploring the capabilities of Vitis AI, including its advanced quantization solutions, the thesis also showcases an acceleration approach for accelerating different processes of a single computer vision task by taking advantage of the heterogeneous resources of the FPGA. The execution time and throughput results of the CNN models, for the tasks of binary semantic segmentation for cloud detection as well as image regression for irradiance estimation, on the FPGA, showcase the real-time processing capabilities of the accelerator. Finally, the thesis contributes the design details of a bi-directional interfacing system for high-throughput and fault-tolerant image transfers between deep learning embedded accelerators, in the context of on-board payload data processing architectures. The interfacing system is developed for interfacing an FPGA with the Intel Movidius Myriad 2 and the extensive testing campaign based on both commercial as well as prototype hardware platforms, shows that it can achieve a bit-rate of up to 2.4 Gbps duplex image data transfers

    Characterizing Single Event Upsets within the lpGBT-based End-of-Substructure Card

    Get PDF
    The CERN ATLAS particle physics experiment is currently undergoing a significant system upgrade (ATLAS Phase II upgrade). As a result of the upgrade the experiment's Inner Tracker (ITk) and the front-end electronics of the ITk are being redesigned to handle increased data rates and a higher radiation environment. Within the ITk, the End Of Substructure (EoS) card is a new custom designed digital board that will provide the data, command, and power interface between on and off-detector electronics. Each EoS card makes use of one or two custom CERN designed low power Gigabit Transceivers (lpGBTs) ASICS that have been created for the purposes of supporting high bandwidth optical links in high radiation environments throughout CERN experiments. An estimated 1552 EoS cards will be installed in the ITk, each representing a potential point of failure. Given the complexity and quantity of new hardware designs involved, and that the EoS cards will be not be accessible or serviceable after the upgrade has been completed, there is a need for rigorous quality assurance (QA) and quality control (QC) testing. This thesis therefore describes an independent test setup commissioned, by the author, at the University of Cape Town (UCT) Physics Department for characterising aspects of EoS card's operation under representative radiation conditions. Specifically, the radiation environment of the ITk poses a challenge to electronics as energetic particles can deposit their energy within the circuit material resulting in an erroneous change in logic known as a Single Event Upset (SEU). The lpGBT is a radiation tolerant ASIC and employs digital signal processing (DSP) and triple modular redundancy (TMR) techniques to mitigate against the effects of SEUs on transmitted data. This thesis presents an experiment setup which tests this hypothesis that the DSP stages are susceptible to data corruption caused by SEUs. In addition the setup also attempts to characterize the susceptibility of the scrambler, encoder, and interleaver stages within the lpGBT to SEUs. This experiment is carried out by actively irradiating an EoS card with a neutron source (energy spectrum of up to 11 MeV), while emulating each stage on a non-irradiated off-board FPGA. Additionally and in support of this experiment, the existing firmware and LabView automation software developed at DESY are extended. Results from this thesis indicate that the DSP stages within the lpGBT are susceptible to data corruption caused by SEUs. It was also shown that the susceptibility of the experiment itself did not effect the measured SEU rates. Finally, preliminary results suggest that susceptibility of the DSP stages within the lpGBT can be characterized as the Bit Error Rate (BER) increases depending on the number of active stages
    corecore