11,261 research outputs found

    Spectral partitioning of random graphs with given expected degrees

    Get PDF
    It is a well established fact, that - in the case of classical random graphs like (variants of) Gn,p or random regular graphs - spectral methods yield efficient algorithms for clustering (e. g. colouring or bisection) problems. The theory of large networks emerging recently provides convincing evidence that such networks, albeit looking random in some sense, cannot sensibly be described by classical random graphs. A variety of new types of random graphs have been introduced. One of these types is characterized by the fact that we have a fixed expected degree sequence, that is for each vertex its expected degree is given. Recent theoretical work confirms that spectral methods can be successfully applied to clustering problems for such random graphs, too - provided that the expected degrees are not too small, in fact ≥ log6 n. In this case however the degree of each vertex is concentrated about its expectation. We show how to remove this restriction and apply spectral methods when the expected degrees are bounded below just by a suitable constant. Our results rely on the observation that techniques developed for the classical sparse Gn,p random graph (that is p = c/n) can be transferred to the present situation, when we consider a suitably normalized adjacency matrix: We divide each entry of the adjacency matrix by the product of the expected degrees of the incident vertices. Given the host of spectral techniques developed for Gn,p this observation should be of independent interest.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Finding community structure in networks using the eigenvectors of matrices

    Get PDF
    We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio

    Clustering and Community Detection with Imbalanced Clusters

    Full text link
    Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced cluster sizes. Our approach parameterizes a family of graphs by adaptively modulating node degrees on a fixed node set, yielding a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach and demonstrate the superiority of our method through experiments on synthetic and real datasets for data clustering, semi-supervised learning and community detection.Comment: Extended version of arXiv:1309.2303 with new applications. Accepted to IEEE TSIP

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model
    corecore