83,790 research outputs found

    Spectral Norm of Symmetric Functions

    Full text link
    The spectral norm of a Boolean function f:{0,1}n{1,1}f:\{0,1\}^n \to \{-1,1\} is the sum of the absolute values of its Fourier coefficients. This quantity provides useful upper and lower bounds on the complexity of a function in areas such as learning theory, circuit complexity, and communication complexity. In this paper, we give a combinatorial characterization for the spectral norm of symmetric functions. We show that the logarithm of the spectral norm is of the same order of magnitude as r(f)log(n/r(f))r(f)\log(n/r(f)) where r(f)=max{r0,r1}r(f) = \max\{r_0,r_1\}, and r0r_0 and r1r_1 are the smallest integers less than n/2n/2 such that f(x)f(x) or f(x)parity(x)f(x) \cdot parity(x) is constant for all xx with xi[r0,nr1]\sum x_i \in [r_0, n-r_1]. We mention some applications to the decision tree and communication complexity of symmetric functions

    Geodesics, retracts, and the norm-preserving extension property in the symmetrized bidisc

    Get PDF
    A set in a domain in has the norm-preserving extension property if every bounded holomorphic function on has a holomorphic extension to with the same supremum norm. We prove that an algebraic subset of the symmetrized bidischas the norm-preserving extension property if and only if it is either a singleton, itself, a complex geodesic of , or the union of the set and a complex geodesic of degree in . We also prove that the complex geodesics in coincide with the nontrivial holomorphic retracts in . Thus, in contrast to the case of the ball or the bidisc, there are sets in which have the norm-preserving extension property but are not holomorphic retracts of . In the course of the proof we obtain a detailed classification of the complex geodesics in modulo automorphisms of . We give applications to von Neumann-type inequalities for -contractions (that is, commuting pairs of operators for which the closure of is a spectral set) and for symmetric functions of commuting pairs of contractive operators. We find three other domains that contain sets with the norm-preserving extension property which are not retracts: they are the spectral ball of matrices, the tetrablock and the pentablock. We also identify the subsets of the bidisc which have the norm-preserving extension property for symmetric functions

    The Eigenvalue Problem for Linear and Affine Iterated Function Systems

    Get PDF
    The eigenvalue problem for a linear function L centers on solving the eigen-equation Lx = rx. This paper generalizes the eigenvalue problem from a single linear function to an iterated function system F consisting of possibly an infinite number of linear or affine functions. The eigen-equation becomes F(X) = rX, where r>0 is real, X is a compact set, and F(X)is the union of f(X), for f in F. The main result is that an irreducible, linear iterated function system F has a unique eigenvalue r equal to the joint spectral radius of the functions in F and a corresponding eigenset S that is centrally symmetric, star-shaped, and full dimensional. Results of Barabanov and of Dranishnikov-Konyagin-Protasov on the joint spectral radius follow as corollaries.Comment: 18 pages, 3 figure

    Low-Rank Inducing Norms with Optimality Interpretations

    Full text link
    Optimization problems with rank constraints appear in many diverse fields such as control, machine learning and image analysis. Since the rank constraint is non-convex, these problems are often approximately solved via convex relaxations. Nuclear norm regularization is the prevailing convexifying technique for dealing with these types of problem. This paper introduces a family of low-rank inducing norms and regularizers which includes the nuclear norm as a special case. A posteriori guarantees on solving an underlying rank constrained optimization problem with these convex relaxations are provided. We evaluate the performance of the low-rank inducing norms on three matrix completion problems. In all examples, the nuclear norm heuristic is outperformed by convex relaxations based on other low-rank inducing norms. For two of the problems there exist low-rank inducing norms that succeed in recovering the partially unknown matrix, while the nuclear norm fails. These low-rank inducing norms are shown to be representable as semi-definite programs. Moreover, these norms have cheaply computable proximal mappings, which makes it possible to also solve problems of large size using first-order methods

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties
    corecore