2,213 research outputs found

    Spectral Norm of Random Kernel Matrices with Applications to Privacy

    Get PDF
    Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performances, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function returning the inner product between the images of two data points in the feature space. Central to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a given sample dataset. In this paper, we initiate the study of non-asymptotic spectral theory of random kernel matrices. These are n x n random matrices whose (i,j)th entry is obtained by evaluating the kernel function on xix_i and xjx_j, where x1,...,xnx_1,...,x_n are a set of n independent random high-dimensional vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest eigenvalue) of random kernel matrices constructed by commonly used kernel functions based on polynomials and Gaussian radial basis. As an application of these results, we provide lower bounds on the distortion needed for releasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion which captures a large class of privacy definitions. Kernel ridge regression is standard method for performing non-parametric regression that regularly outperforms traditional regression approaches in various domains. Our privacy distortion lower bounds are the first for any kernel technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower bounds for other release problems which only hold under very restrictive input settings.Comment: 16 pages, 1 Figur

    Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

    Full text link
    Random sinusoidal features are a popular approach for speeding up kernel-based inference in large datasets. Prior to the inference stage, the approach suggests performing dimensionality reduction by first multiplying each data vector by a random Gaussian matrix, and then computing an element-wise sinusoid. Theoretical analysis shows that collecting a sufficient number of such features can be reliably used for subsequent inference in kernel classification and regression. In this work, we demonstrate that with a mild increase in the dimension of the embedding, it is also possible to reconstruct the data vector from such random sinusoidal features, provided that the underlying data is sparse enough. In particular, we propose a numerically stable algorithm for reconstructing the data vector given the nonlinear features, and analyze its sample complexity. Our algorithm can be extended to other types of structured inverse problems, such as demixing a pair of sparse (but incoherent) vectors. We support the efficacy of our approach via numerical experiments

    Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks

    Full text link
    Deep Convolutional Networks (DCNs) have been shown to be vulnerable to adversarial examples---perturbed inputs specifically designed to produce intentional errors in the learning algorithms at test time. Existing input-agnostic adversarial perturbations exhibit interesting visual patterns that are currently unexplained. In this paper, we introduce a structured approach for generating Universal Adversarial Perturbations (UAPs) with procedural noise functions. Our approach unveils the systemic vulnerability of popular DCN models like Inception v3 and YOLO v3, with single noise patterns able to fool a model on up to 90% of the dataset. Procedural noise allows us to generate a distribution of UAPs with high universal evasion rates using only a few parameters. Additionally, we propose Bayesian optimization to efficiently learn procedural noise parameters to construct inexpensive untargeted black-box attacks. We demonstrate that it can achieve an average of less than 10 queries per successful attack, a 100-fold improvement on existing methods. We further motivate the use of input-agnostic defences to increase the stability of models to adversarial perturbations. The universality of our attacks suggests that DCN models may be sensitive to aggregations of low-level class-agnostic features. These findings give insight on the nature of some universal adversarial perturbations and how they could be generated in other applications.Comment: 16 pages, 10 figures. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS '19
    • …
    corecore