974 research outputs found

    Quantifying the Informativeness of Similarity Measurements

    Get PDF
    In this paper, we describe an unsupervised measure for quantifying the 'informativeness' of correlation matrices formed from the pairwise similarities or relationships among data instances. The measure quantifies the heterogeneity of the correlations and is defined as the distance between a correlation matrix and the nearest correlation matrix with constant off-diagonal entries. This non-parametric notion generalizes existing test statistics for equality of correlation coefficients by allowing for alternative distance metrics, such as the Bures and other distances from quantum information theory. For several distance and dissimilarity metrics, we derive closed-form expressions of informativeness, which can be applied as objective functions for machine learning applications. Empirically, we demonstrate that informativeness is a useful criterion for selecting kernel parameters, choosing the dimension for kernel-based nonlinear dimensionality reduction, and identifying structured graphs. We also consider the problem of finding a maximally informative correlation matrix around a target matrix, and explore parameterizing the optimization in terms of the coordinates of the sample or through a lower-dimensional embedding. In the latter case, we find that maximizing the Bures-based informativeness measure, which is maximal for centered rank-1 correlation matrices, is equivalent to minimizing a specific matrix norm, and present an algorithm to solve the minimization problem using the norm's proximal operator. The proposed correlation denoising algorithm consistently improves spectral clustering. Overall, we find informativeness to be a novel and useful criterion for identifying non-trivial correlation structure.

    Quantum correlations and distinguishability of quantum states

    Full text link
    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.Comment: Review article, 103 pages, to appear in J. Math. Phys. 55 (special issue: non-equilibrium statistical mechanics, 2014

    Feature Selection for Gene Expression Data Based on Hilbert-Schmidt Independence Criterion

    Get PDF
    DNA microarrays are capable of measuring expression levels of thousands of genes, even the whole genome, in a single experiment. Based on this, they have been widely used to extend the studies of cancerous tissues to a genomic level. One of the main goals in DNA microarray experiments is to identify a set of relevant genes such that the desired outputs of the experiment mostly depend on this set, to the exclusion of the rest of the genes. This is motivated by the fact that the biological process in cell typically involves only a subset of genes, and not the whole genome. The task of selecting a subset of relevant genes is called feature (gene) selection. Herein, we propose a feature selection algorithm for gene expression data. It is based on the Hilbert-Schmidt independence criterion, and partly motivated by Rank-One Downdate (R1D) and the Singular Value Decomposition (SVD). The algorithm is computationally very fast and scalable to large data sets, and can be applied to response variables of arbitrary type (categorical and continuous). Experimental results of the proposed technique are presented on some synthetic and well-known microarray data sets. Later, we discuss the capability of HSIC in providing a general framework which encapsulates many widely used techniques for dimensionality reduction, clustering and metric learning. We will use this framework to explain two metric learning algorithms, namely the Fisher discriminant analysis (FDA) and closed form metric learning (CFML). As a result of this framework, we are able to propose a new metric learning method. The proposed technique uses the concepts from normalized cut spectral clustering and is associated with an underlying convex optimization problem

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic
    corecore