1,549 research outputs found

    Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation

    Get PDF
    Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single component hard-sphere fluid. Extending previous work for pure systems (Gránásy L, Pusztai T, Saylor D and Warren J A 2007 Phys. Rev. Lett. 98 art no 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai T, Bortel G and Gránásy L 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombododecahedral, truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model

    Development of Raman Spectroscopy Tools for Surgery Guidance in Head & Neck Oncology

    Get PDF

    Development of Raman Spectroscopy Tools for Surgery Guidance in Head & Neck Oncology

    Get PDF

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Light Manipulation by Single Cells: The Case of Diatoms

    Get PDF

    Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry

    Get PDF
    Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Probing morphology-dependent aggregation and photocurrent generation in polymer/fullerene photovoltaic devices

    Get PDF
    In this dissertation, new spectroscopic and electrical imaging approaches were developed to map morphology-dependent aggregation properties of polymer chains in model solar cell devices. These techniques reveal new correlations between local structure and material performance on sub-micron size scales which are not accessible by other techniques. Resonance Raman spectroscopic imaging was developed as a physical probe to identify and spatially map morphology-dependent variations of intra- and interchain interactions and order in poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) photovoltaic blend thin films. The C=C band of P3HT backbone was decomposed into aggregated and unaggregated component contribution at ~1450 cm-1 and ~1470 cm-1, respectively. The ratio, R, is used to report on the relative densities of states (DOS) of aggregated and unaggregated species. From both R and frequency dispersion resonance Raman images of these individual species, four distinct types of P3HT chains are identified and mapped in annealed P3HT/PCBM blend thin films: i) highly aggregated/crystalline; ii) partially aggregated; iii) interfacial; and iv) unaggregated/PCBM-rich. Secondly, the effect of aggregated and unaggregated species of P3HT on photocurrent is explored by a combined resonance Raman-photocurrent imaging (RRPI) approach. Maps of R values and photocurrents are generated for both as-cast and annealed P3HT/PCBM devices that permit direct spatial correlations between the P3HT aggregation state and local photocurrent generation efficiency. Regions of increased P3HT aggregation are observed at both P3HT/PCBM interfaces and in P3HT-rich areas that result in decreased photocurrent generation. Voltage-dependent RRPI studies are also performed at several applied bias levels that reveal distinct changes in photocurrents due to morphology-dependent charge mobility characteristics. Thirdly, the effect of composition of P3HT: PCBM on aggregation and of P3HT and corresponding solar cells is studied. P3HT: PCBM thin film solar cells of variable weight/weight (w/w) compositions (i.e., 1:1 to 1:4) were fabricated to systematically perturb polymer packing (aggregation) properties. On average, increasing the PCBM weight fraction, Raman spectra in the dominant P3HT C=C stretching mode region (~1450—1470 cm-1) whereas symmetric stretching C-C modes show decreased intensities and red shifts. Raman bands of P3HT C=C modes can likewise be decomposed into contributions from both aggregated and unaggregated chains and, R values decrease with increased PCBM content. Most aggregated (ordered) P3HT chains reside primarily outside PCBM-rich regions but, reverses for \u3e1:1 PCBM w/w loadings where all aggregated P3HT chains reside within PCBM-rich regions. This effect is attributed to a change in the type of P3HT aggregation from inter- to primarily intra-chain. The results reveal that the polymer aggregation state and its spatial location in the film that together have a large impact on charge transport properties and material performance. Lastly, intensity modulated photocurrent spectroscopy (IMPS) and imaging is used to study the aggregation effect on charge transport and recombination processes in P3HT/PCBM devices. This frequency-domain technique provides access to both bulk and interfacial charge transport and correlations between frequency-dependent photocurrent and local structure are revealed. Maps of the photocurrent and phase shift were recorded at several modulation frequencies spanning ~100 Hz up to 10 KHz. It was found that recombination processes involving trapped charge dominates the IMPS profiles. Temperature- and color-dependent IMPS are now being performed to better understand charge transport mechanisms

    Gemino: Practical and Robust Neural Compression for Video Conferencing

    Full text link
    Video conferencing systems suffer from poor user experience when network conditions deteriorate because current video codecs simply cannot operate at extremely low bitrates. Recently, several neural alternatives have been proposed that reconstruct talking head videos at very low bitrates using sparse representations of each frame such as facial landmark information. However, these approaches produce poor reconstructions in scenarios with major movement or occlusions over the course of a call, and do not scale to higher resolutions. We design Gemino, a new neural compression system for video conferencing based on a novel high-frequency-conditional super-resolution pipeline. Gemino upsamples a very low-resolution version of each target frame while enhancing high-frequency details (e.g., skin texture, hair, etc.) based on information extracted from a single high-resolution reference image. We use a multi-scale architecture that runs different components of the model at different resolutions, allowing it to scale to resolutions comparable to 720p, and we personalize the model to learn specific details of each person, achieving much better fidelity at low bitrates. We implement Gemino atop aiortc, an open-source Python implementation of WebRTC, and show that it operates on 1024x1024 videos in real-time on a A100 GPU, and achieves 2.9x lower bitrate than traditional video codecs for the same perceptual quality.Comment: 12 pages, 6 appendi
    corecore