4,436 research outputs found

    Spectral Method for Solving the Nonlinear Thomas-Fermi Equation Based on Exponential Functions

    Get PDF
    We present an efficient spectral methods solver for the Thomas-Fermi equation for neutral atoms in a semi-infinite domain. The ordinary differential equation has been solved by applying a spectral method using an exponential basis set. One of the main advantages of this approach, when compared to other relevant applications of spectral methods, is that the underlying integrals can be solved analytically and numerical integration can be avoided. The nonlinear algebraic system of equations that is derived using this method is solved using a minimization approach. The presented method has shown robustness in the sense that it can find high precision solution for a wide range of parameters that define the basis set. In our test, we show that the new approach can achieve a very high rate of convergence using a small number of bases elements. We also present a comparison of recently published results for this problem using spectral methods based on several different basis sets. The comparison shows that our method is highly competitive and in many aspects outperforms the previous work

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison

    Full text link
    This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra's model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare these methods with some other numerical results and show that the present approach is applicable for solving nonlinear integro-differential equations.Comment: 18 pages, 5 figures; Published online in the journal of "Mathematical Methods in the Applied Sciences

    Analysis of the divide-and-conquer method for electronic structure calculations

    Full text link
    We study the accuracy of the divide-and-conquer method for electronic structure calculations. The analysis is conducted for a prototypical subdomain problem in the method. We prove that the pointwise difference between electron densities of the global system and the subsystem decays exponentially as a function of the distance away from the boundary of the subsystem, under the gap assumption of both the global system and the subsystem. We show that gap assumption is crucial for the accuracy of the divide-and-conquer method by numerical examples. In particular, we show examples with the loss of accuracy when the gap assumption of the subsystem is invalid

    An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method

    Full text link
    Based on a new approximation method, namely pseudospectral method, a solution for the three order nonlinear ordinary differential laminar boundary layer Falkner-Skan equation has been obtained on the semi-infinite domain. The proposed approach is equipped by the orthogonal Hermite functions that have perfect properties to achieve this goal. This method solves the problem on the semi-infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, this method reduces solution of the problem to solution of a system of algebraic equations. We also present the comparison of this work with numerical results and show that the present method is applicable.Comment: 15 pages, 4 figures; Published online in the journal of "Communications in Nonlinear Science and Numerical Simulation

    Numerical method for evolving the Projected Gross-Pitaevskii equation

    Full text link
    In this paper we describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for a Bose gas in a harmonic oscillator potential. The central difficulty in solving this equation is the requirement that the classical field is restricted to a small set of prescribed modes that constitute the low energy classical region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the PGPE. We show equilibrium and non-equilibrium results from the application of the PGPE to an anisotropic trapped three-dimensional Bose gas.Comment: 12 pages, 5 figures. To appear in Phys. Rev. E. Convergence results added, a few minor changes made and typos fixe

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications
    • …
    corecore