1,715 research outputs found

    Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy

    Get PDF
    Photoacoustic molecular imaging, combined with the reporter-gene technique, can provide a valuable tool for cancer research. The expression of the lacZ reporter gene can be imaged using photoacoustic imaging following the injection of X-gal, a colorimetric assay for the lacZ-encoded enzyme β-galactosidase. Dual-wavelength photoacoustic microscopy was used to non-invasively image the detailed morphology of a lacZ-marked 9L gliosarcoma and its surrounding microvasculature simultaneously in vivo, with a superior resolution on the order of 10 μm. Tumor-feeding vessels were found, and the expression level of lacZ in tumor was estimated. With future development of new absorption-enhancing reporter-gene systems, we anticipate this strategy can lead to a better understanding of the role of tumor metabolism in cancer initiation, progression, and metastasis, and in its response to therapy

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    The angular spectrum of the scattering coefficient map reveals subsurface colorectal cancer

    Get PDF
    Abstract Colorectal cancer diagnosis currently relies on histological detection of endoluminal neoplasia in biopsy specimens. However, clinical visual endoscopy provides no quantitative subsurface cancer information. In this ex vivo study of nine fresh human colon specimens, we report the first use of quantified subsurface scattering coefficient maps acquired by swept-source optical coherence tomography to reveal subsurface abnormities. We generate subsurface scattering coefficient maps with a novel wavelet-based-curve-fitting method that provides significantly improved accuracy. The angular spectra of scattering coefficient maps of normal tissues exhibit a spatial feature distinct from those of abnormal tissues. An angular spectrum index to quantify the differences between the normal and abnormal tissues is derived, and its strength in revealing subsurface cancer in ex vivo samples is statistically analyzed. The study demonstrates that the angular spectrum of the scattering coefficient map can effectively reveal subsurface colorectal cancer and potentially provide a fast and more accurate diagnosis
    • …
    corecore