109 research outputs found

    A compact spectral camera for VIS-NIR imaging

    Get PDF
    This paper describes the design of a spectro-photo/radio-metric camera, that can be used in both portable and in-situ applications, whose compactness is made possible by a suitable image spectral scanning scheme based on a Linearly Variable Filter (LVF). Such filter is able to operate continuously from 400 nm to 2500 nm, allowing the hyper-spectral imaging from visible to near infrared. In traditional scanners the whole apparatus is moved along a path as long as the scene, whereas in this instrument the camera body is still and the LVF it is the only moving part. This solution allows a compact design and an easily portable instrument

    Two-photon Cross Section Enhancement of Photochromic Compounds for Use in 3D Optical Data Storage

    Get PDF
    Rewritable photochrome-based 3D optical data storage requires photochromic molecules with high two-photon absorption (2PA) cross sections. Currently, the low value of two-photon absorption cross sections of existing photochromes makes them unsuitable for practical application in 3D data storage. Worldwide attempts to increase the cross section of photochromic molecules by altering the chemical structure have yielded poor results. In this work, two ways to increase the two-photon absorption cross sections of photochromes were investigated. In the first method, partial success demonstrated by extending the conjugation of a photochromic molecule, a high two-photon absorption cross section of the closed form isomer and high photoconversion to the closed form were realized. At the same time, a decrease in photoswitching quantum yield and low photoconversion to open form was observed. A discussion is provided to explain the results, suggesting that the proposed method of extending the conjugation may not solve the problem. For this reason a new method for effective two-photon absorption cross section enhancement of photochromes was proposed. As a proof of principle, a new two-photon absorbing dye with a hydrogen bonding moiety was synthesized and used for the formation of supramolecular structures with a photochromic compound. Theoretical reasoning and experimental demonstration of energy transfer from the dye to the photochrome under one and two-photon excitation confirmed the practical value of the method. The effects of a 2PA dye on the photochromic properties of a diarylethene were investigated using a model compound to simplify data analysis. Formation of supramolecular structures was revealed using ÂąH NMR spectroscopic methods. The model compound, having the same hydrogen bonding moiety as 2PA dye, has been demonstrated to bind with photochrome molecules at very low concentrations. Photochromic properties of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleimide, including conversions at the photostationary state, extinction coefficients, photoisomerization reaction rates and quantum yields, were shown to be affected by hydrogen bonding with the model compound - 2,6-bis-(acetamido)pyridine. The extent of this change was determined and discussed, demonstrating a balanced supramolecular strategy to modulate photochemical and photophysical properties of this important class of photochromic material

    Flexible Physical Unclonable Functions based on non-deterministically distributed Dye-Doped Fibers and Droplets

    Full text link
    The development of new anti-counterfeiting solutions is a constant challenge and involves several research fields. Much interest is devoted to systems that are impossible to clone, based on the Physical Unclonable Function (PUF) paradigm. In this work, new strategies based on electrospinning and electrospraying of dye-doped polymeric materials are presented for the manufacturing of flexible free-standing films that embed different PUF keys. Films can be used to fabricate anticounterfeiting labels having three encryption levels: i) a map of fluorescent polymer droplets, with non deterministic positions on a dense yarn of polymer nanofibers; ii) a characteristic fluorescence spectrum for each label; iii) a challenge-response pairs (CRPs) identification protocol based on the strong nature of the physical unclonable function. The intrinsic uniqueness introduced by the deposition techniques encodes enough complexity into the optical anti-counterfeiting tag to generate thousands of cryptographic keys. The simple and cheap fabrication process as well as the multilevel authentication makes such colored polymeric unclonable tags a practical solution in the secure protection of merchandise in our daily life

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de EconomĂ­a, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    Hyperspectral colour imaging and spectrophotometric instrumentation

    Get PDF
    The trichromatic nature of commercial photography is strictly connected with the nature of human colour vision, although the characteristics of usual colour imaging devices are quite different from the human visual system. The increase in the number of colour channels for spectral (either multispectral or hyperspectral) imaging is an active field of research with many potential applications in different fields. Each element of the captured scene is specified in the spectral image by the spectral reflectance factor. This measurement is independent of the particular illumination of the scene and allows the colorimetric computation in a device-independent colour space for any chosen illuminant and any observer. This thesis describes the project and construction of a compact spectrophotometric camera, which can be used in both portable and in-situ applications. The compactness is made possible by a suitable image spectral scanning based on an Induced Transmission Filter (ITF). This filter is made by a set of thin-film coatings of dielectric materials with high and low refraction index, whose shape like a wedge induces a wavelength selective transmittance, continuously variable along one direction and uniform in the perpendicular direction. Such a filter, classified as Linearly Variable Filter (LVF), operates continuously from 430nm to 940nm and allows hyperspectral imaging. In traditional scanners the whole apparatus is moved along a path as long as the scene, whereas in this instrument the camera body is still and the LVF is the only moving part. The sequence of operations for wavelength and radiometric calibrations are discussed. The expected acquisition times and number of images as a function of the spectral sampling step are considered. The resulting properties make the instrument easy to use and with short acquisition times. Moreover, overviews of the historic evolution of colour vision fundamentals, colour spaces and spectral imaging technology are given for introducing the reader to the essential concepts useful for the understanding of the text

    Infrared focal plane performance in the South Atlantic anomaly

    Get PDF
    Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling

    Polymorph Separation by Ordered Patterning

    Get PDF
    We herein address the problem of polymorph selection by introducing a general and straightforward concept based on their ordering. We demonstrated the concept by the ordered patterning of four compounds capable of forming different polymorphs when deposited on technologically relevant surfaces. Our approach exploits the fact that, when the growth of a crystalline material is confined within sufficiently small cavities, only one of the possible polymorphs is generated. We verify our method by utilizing several model compounds to fabricate micrometric "logic patterns" in which each of the printed pixels is easily identifiable as comprising only one polymorph and can be individually accessed for further operations

    Optical investigations of nanostructured oxides and semiconductors

    Get PDF
    This work is motivated by the prospect of building a quantum computer: a device that would allow physicists to explore quantum mechanics more deeply, and allow everyone else to keep their credit card numbers safe on the internet. In this thesis we explore materials that are relevant to a proposed quantum computer architecture.Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature areuseful for devices. Adjusting the ferroelectric transition temperature is traditionally accomplished by chemical substitution, as in barium strontium titanate. We investigate strained-strontium titanate, which is ferroelectric at room-temperature, and a composite material of barium strontium titanate and magnesium oxide.We present optical techniques to measure electron spin dynamics with GHz dynamical bandwidth,transform-limited spectral selectivity, and phase-sensitive detection. We demonstrate the technique with a measurement of GHz-spin precession in n-GaAs. We also describe our efforts to measure single quantum dots optically.Nanoscale devices with photonic properties have been the subject of intense research over the past decade. Potential nanophotonic applications include communications, polarization-sensitive detectors, and solar power generation. Here we show photosensitivity of a nanoscale detectorwritten at the interface between two oxides
    • …
    corecore