515 research outputs found

    Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

    Get PDF
    Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nystrom approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples

    NFFT meets Krylov methods: Fast matrix-vector products for the graph Laplacian of fully connected networks

    Get PDF
    The graph Laplacian is a standard tool in data science, machine learning, and image processing. The corresponding matrix inherits the complex structure of the underlying network and is in certain applications densely populated. This makes computations, in particular matrix-vector products, with the graph Laplacian a hard task. A typical application is the computation of a number of its eigenvalues and eigenvectors. Standard methods become infeasible as the number of nodes in the graph is too large. We propose the use of the fast summation based on the nonequispaced fast Fourier transform (NFFT) to perform the dense matrix-vector product with the graph Laplacian fast without ever forming the whole matrix. The enormous flexibility of the NFFT algorithm allows us to embed the accelerated multiplication into Lanczos-based eigenvalues routines or iterative linear system solvers and even consider other than the standard Gaussian kernels. We illustrate the feasibility of our approach on a number of test problems from image segmentation to semi-supervised learning based on graph-based PDEs. In particular, we compare our approach with the Nystr\"om method. Moreover, we present and test an enhanced, hybrid version of the Nystr\"om method, which internally uses the NFFT.Comment: 28 pages, 9 figure

    Revisiting the Nystrom Method for Improved Large-Scale Machine Learning

    Get PDF
    We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our results highlight complementary aspects of sampling versus projection methods; they characterize the effects of common data preprocessing steps on the performance of these algorithms; and they point to important differences between uniform sampling and nonuniform sampling methods based on leverage scores. In addition, our empirical results illustrate that existing theory is so weak that it does not provide even a qualitative guide to practice. Thus, we complement our empirical results with a suite of worst-case theoretical bounds for both random sampling and random projection methods. These bounds are qualitatively superior to existing bounds---e.g. improved additive-error bounds for spectral and Frobenius norm error and relative-error bounds for trace norm error---and they point to future directions to make these algorithms useful in even larger-scale machine learning applications.Comment: 60 pages, 15 color figures; updated proof of Frobenius norm bounds, added comparison to projection-based low-rank approximations, and an analysis of the power method applied to SPSD sketche

    Efficient graph cuts for unsupervised image segmentation using probabilistic sampling and SVD-based approximation

    Get PDF
    The application of graph theoretic methods to unsupervised image partitioning has been a very active field of research recently. For weighted graphs encoding the (dis)similarity structure of locally extracted image features, unsupervised segmentations of images into coherent structures can be computed in terms of extremal cuts of the underlying graphs. In this context, we focus on the normalized cut criterion and a related recent convex approach based on semidefinite programming. As both methods soon become computationally demanding with increasing graph size, an important question is how the computations can be accelerated. To this end, we study an SVD approximation method in this paper which has been introduced in a different clustering context. We apply this method, which is based on probabilistic sampling, to both segmentation approaches and compare it with the Nyström extension suggested for the normalized cut. Numerical results confirm that by means of the sampling-based SVD approximation technique, reliable segmentations can be computed with a fraction (less than 5%) of the original computational cost
    • …
    corecore