10,401 research outputs found

    Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows

    No full text
    We present a review of the semi-Lagrangian method for advection-diusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable

    Recursive integral method for transmission eigenvalues

    Full text link
    Recently, a new eigenvalue problem, called the transmission eigenvalue problem, has attracted many researchers. The problem arose in inverse scattering theory for inhomogeneous media and has important applications in a variety of inverse problems for target identification and nondestructive testing. The problem is numerically challenging because it is non-selfadjoint and nonlinear. In this paper, we propose a recursive integral method for computing transmission eigenvalues from a finite element discretization of the continuous problem. The method, which overcomes some difficulties of existing methods, is based on eigenprojectors of compact operators. It is self-correcting, can separate nearby eigenvalues, and does not require an initial approximation based on some a priori spectral information. These features make the method well suited for the transmission eigenvalue problem whose spectrum is complicated. Numerical examples show that the method is effective and robust.Comment: 18 pages, 8 figure

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure
    corecore