436 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Joint Spatial Division and Multiplexing for FDD in Intelligent Reflecting Surface-assisted Massive MIMO Systems

    Get PDF
    © 2022 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://10.1109/TVT.2022.3187656Intelligent reflecting surface (IRS) is a promising technology to deliver the higher spectral and energy requirements in fifth-generation (5G) and beyond wireless networks while shaping the propagation environment. Such a design can be further enhanced with massive multiple-input-multiple-output (mMIMO) characteristics towards boosting the network performance. However, channel reciprocity, assumed in 5G systems such as mMIMO, appears to be questioned in practice by recent studies on IRS. Hence, contrary to previous works, we consider frequency division duplexing (FDD) to study the performance of an IRS-assisted mMIMO system. However, FDD is not suitable for large number of antennas architectures. For this reason we employ the joint spatial division and multiplexing (JSDM) approach exploiting the structure of the correlation of the channel vectors to reduce the channel state information (CSI) uplink feedback, and thus, allowing the use even of a large number of antennas at the base station. JSDM entails dual-structured precoding and clustering the user equipments (UEs) with the same covariance matrix into groups. Specifically, we derive the sum spectral efficiency (SE) based on statistical CSI in terms of large-scale statistics by using the deterministic equivalent (DE) analysis while accounting for correlated Rayleigh fading. Subsequently, we formulate the optimization problem concerning the sum SE with respect to the reflecting beamforming matrix (RBM) and the total transmit power, which can be performed at every several coherence intervals by taking advantage of the slow-time variation of the large-scale statistics. This notable property contributes further to the decrease of the feedback overhead. Numerical results, verified by Monte-Carlo (MC) simulations, enable interesting observations by elucidating how fundamental system parameters such as the rank of the covariance matrix and the number of groups of UEs affect the performance. For example, the selection of a high rank improves the channel conditioning but increases the feedback overhead.Peer reviewe

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Indoor Massive MIMO Deployments for Uniformly High Wireless Capacity

    Full text link
    Providing consistently high wireless capacity is becoming increasingly important to support the applications required by future digital enterprises. In this paper, we propose Eigen-direction-aware ZF (EDA-ZF) with partial coordination among base stations (BSs) and distributed interference suppression as a practical approach to achieve this objective. We compare our solution with Zero Forcing (ZF), entailing neither BS coordination or inter-cell interference mitigation, and Network MIMO (NeMIMO), where full BS coordination enables centralized inter-cell interference management. We also evaluate the performance of said schemes for three sub-6 GHz deployments with varying BS densities -- sparse, intermediate, and dense -- all with fixed total number of antennas and radiated power. Extensive simulations show that: (i) indoor massive MIMO implementing the proposed EDA-ZF provides uniformly good rates for all users; (ii) indoor network densification is detrimental unless full coordination is implemented; (iii) deploying NeMIMO pays off under strong outdoor interference, especially for cell-edge users

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa
    • …
    corecore