2,789 research outputs found

    Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller

    Get PDF
    The time-dependent spectral characteristics of underwater sound radiated by an oceanic vessel have complex dependencies on ship machinery, propeller dynamics, and the hydrodynamics of the ship exhaust and motion, as well as onboard activities. Here, the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios, ranging from 20% to 82% at a fixed number of propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, an analysis of one special measurement is provided: propeller pitch and RPM over the duration of the measurement when the ship changes speed. The 50% pitch was found to be a crucial point for this ship, around which the tonal characteristics of its underwater radiated sound attain their peak values while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation

    Quantifying the contribution of ship noise to the underwater sound field

    Get PDF
    Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 148(6), (2020): 3863-3872, https://doi.org/10.1121/10.0002922.The ambient sound field in the ocean can be decomposed into a linear combination of two independent fields attributable to wind-generated wave action at the surface and noise radiated by ships. The vertical coherence (the cross-spectrum normalized by the power spectra) and normalized directionality of wind-generated noise in the ocean are stationary in time, do not vary with source strength and spectral characteristics, and depend primarily on the local sound speed and the geoacoustic properties which define the propagation environment. The contribution to the noise coherence due to passing vessels depends on the range between the source and receiver, the propagation environment, and the effective bandwidth of the characteristic source spectrum. Using noise coherence models for both types of the sources, an inversion scheme is developed for the relative and absolute contribution of frequency dependent ship noise to the total sound field. A month-long continuous ambient sound recording collected on a pair of vertically aligned hydrophones near Alvin Canyon at the New England shelf break is decomposed into time-dependent ship noise and wind-driven noise power spectra. The processing technique can be used to quantify the impact of human activity on the sound field above the natural dynamic background noise, or to eliminate ship noise from a passive acoustic monitoring data set.The work was funded by Office of Naval Research, Code 32 (Grant No. N00014-17-1-2692 for Y.T. Lin), and the Canada Research Chair program and the Natural Science and Engineering Research Council Discovery program. N. S. would like to thank Transatlantic Ocean System Science and Technology (TOSST) for his graduate fellowship.2021-06-2

    Novel DEMON Spectra Analysis Techniques and Empirical Knowledge Based Reference Criterion for Acoustic Signal Classification

    Get PDF
    This paper presents some novel methods to estimate a vessel’s number of shafts, course, speed and classify it using the underwater acoustic noise it generates. A classification framework as well as a set of reference parameters for comparison are put forth. Identifying marine traffic in surroundings is an important task for vessels in an open sea. Vessels in vicinity can be identified using their signatures. One of the typical signatures emitted by a vessel is its acoustic measurements. The raw sonar data consisting of the acoustic signatures is generally observed manually by sonar operators for suggesting class of query vessel. The valuable information that can be extracted from the recorded acoustic signature includes shaft revolutions per minute (SRPM), number of blades (NOB), number of shafts, course and speed etc. Expert sonar operators use their empirical knowledge to estimate a vessel’s SRPM and NOB. Based on this information vessel classification is performed. Empirical knowledge comes with experience, and the manual process is prone to human error. To make the process systematic, calculation of the parameters of the received acoustic samples can be visually analyzed using Detection of Envelope Modulation on Noise (DEMON) spectra. Reported research mostly focuses on SRPM and NOB. Parameters such as number of shafts and vessel course and speed can effectively aid the vessel classification process. This paper makes three novel contributions in this area. Firstly, some novel DEMON spectra analysis techniques are proposed to estimate a water vessel’s number of shafts, speed, and relative course. Secondly, this paper presents a classification framework that uses the features extracted from DEMON spectra and compares them with a reference set. Thirdly, a novel set of reference parameters are provided that aid classification into categories of large merchant ship type 1, large merchant ship type 2, large merchant ship type 3, medium merchant ship, oiler, car carrier, cruise ship, fishing boat and fishing trawler. The proposed analysis and classification techniques were assessed through trials with 877 real acoustic signatures recorded under varying conditions of ship’s speed and sea state. The classification trials revealed a high accuracy of 94.7%

    Analysis of the Underwater Radiated Noise Generated by Hull Vibrations of the Ships

    Get PDF
    Shipping traffic is recognised as the main man-noise source of the anthropogenic noise generated in the marine environment. The underwater acoustic pollution is increased due to the increment of the human activity at seas supposing a threat for marine habitats. The ship as acoustic source must be understood and controlled to manage the maritime areas both in time and space to reduce the impact of noise in marine fauna. Shipping noise is mainly composed of flow noise, propeller noise and machinery noise. This research is focused on the analysis and estimation of the underwater radiated noise generated by the vibrations of the onboard machinery or structure-borne noise based on the calculation of the transfer function. This function relates the acceleration levels of the vibrations of the hull’s panels and the radiated noise by them using the radiation efficiency. Different analytical methods to estimate the radiation efficiency are presented and compared with data collected at sea. The measurements are performed acquiring simultaneously acceleration and acoustic levels by means on accelerometers installed on the hull’s panels at different positions and hydrophones deployed close to the bow, middle and stern of the ship. The analysis of the transmission of the vibrations along the ships is performed using the data from different locations of the hydrophones. The quality of the measurements is analysed using the coherence function through the spectral correlation between the measurement of vibrations and acoustic levels. On the other hand, signal-to-noise ratio is computed to verify the strength of the noise sources. The computed transfer function is used to predict the underwater radiated noise from vibrations showing differences less than 2 dB re to 1 μPa2

    Range-only underwater target localization : error characterization

    Get PDF
    Locating a target from range measurements using only one mobile transducer has been increased over the last years. This method allows us to reduce the high costs of deployment and maintenance of traditional fixed systems on the seafloor such as Long Baseline. The range-only single-beacon is one of the new architectures developed using the new capabilities of modern acoustic underwater modems, which can be time synchronization, time stamp, and range measurements. This document presents a method to estimate the sources of error in this type of architecture so as to obtain a mathematical model which allows us to develop simulations and study the best localization algorithms. Different simulations and real field tests have been carried out in order to verify a good performance of the model proposed.Postprint (published version

    Detecting Inception of Hydrodynamic Cavitation Noise of Ships using Quadratic Phase Coupling Index as an Indicator

    Get PDF
    There is ever increasing interest in underwater noise control onboard ships as part of concerted efforts to reduce ship’s radiated noise. Reduction of radiated noise is considered important as it will affect the performance of hydro-acoustic systems such as sonars, echo sounders, towed systems, etc. Out of three major sources of noise onboard ships, viz., machinery, propeller, and hydrodynamic noise, propeller noise is considered a major source beyond certain speed at which propellers cavitate produces cavitation noise. The inception speed of propeller cavitation is generally accompanied by sudden increase in radiated noise level of 8-15 dB when measured using a hydrophone placed on the seabed. This paper attempts to establish the concept of quadratic phase coupling index as an indicator to detect inception of cavitation of ship propellers. This concept was tested on actual ship radiated noise data measured at sea for evaluating its effectiveness.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.53-62, DOI:http://dx.doi.org/10.14429/dsj.65.788

    Cancellation of Towing Ship Interference in Passive SONAR in a Shallow Ocean Environment

    Get PDF
    Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets

    A methodology for shipping noise field calibration and excess noise estimation: the Azores case study

    Get PDF
    Economic globalization and the continuous search for food, energy and raw materials led to an estimated 3 dB/decade increase of ocean noise intensity. Determining the level of anthropogenic noise, the so-called excess noise, and building identifiable meaningful indicators for supporting marine management policies currently requires extensive observation data and computer modeling. For modeling purposes, in this study, anthropogenic noise was reduced to shipping traffic drawn from Automatic Identification System data, and environmental sound was attributed to surface wind only. Data-model comparison allowed introducing a methodology for simple model calibration and estimate excess noise. This methodology was tested on acoustic recordings performed in June 2018 at three locations to the southwest of Faial-Pico Islands in the Azores archipelago. The results show that field-calibrated excess noise sound maps are in line with the shipping distribution in the area, revealing a number of potentially marine life-threatening hotspots. Excess noise addresses the need for a quantifiable measure of ocean noise only and therefore offers a basis for building suitable continuous anthropogenic noise pollution indicators.info:eu-repo/semantics/publishedVersio
    • …
    corecore