163 research outputs found

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl

    Cevian operations on distributive lattices

    Get PDF
    We construct a completely normal bounded distributive lattice D in which for every pair (a, b) of elements, the set {x \in D | a \le b \lor x} has a countable coinitial subset, such that D does not carry any binary operation - satisfying the identities x \le y \lor(x-y),(x-y)\land(y-x) = 0, and x-z \le (x-y)\lor(y-z). In particular, D is not a homomorphic image of the lattice of all finitely generated convex {\ell}-subgroups of any (not necessarily Abelian) {\ell}-group. It has 2elements.ThissolvesnegativelyafewproblemsstatedbyIberkleid,Martiˊnez,andMcGovernin2011andrecentlybytheauthor.Thisworkalsoservesaspreparationforaforthcomingpaperinwhichweprovethatforanyinfinitecardinal\aleph 2 elements. This solves negatively a few problems stated by Iberkleid, Mart{\'i}nez, and McGovern in 2011 and recently by the author. This work also serves as preparation for a forthcoming paper in which we prove that for any infinite cardinal \lambda,theclassofStonedualsofspectraofallAbeliangroupswithorderunitisnotclosedunderL, the class of Stone duals of spectra of all Abelian {\ell}-groups with order-unit is not closed under L \infty\lambda$-elementary equivalence.Comment: 23 pages. v2 removes a redundancy from the definition of a Cevian operation in v1.In Theorem 5.12, Idc should be replaced by Csc (especially on the G side

    Stone duality above dimension zero: Axiomatising the algebraic theory of C(X)

    Get PDF
    It has been known since the work of Duskin and Pelletier four decades ago that KH^op, the category opposite to compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that KH^op is equivalent to a possibly infinitary variety of algebras V in the sense of Slominski and Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of V can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosicky independently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of KH^op. In particular, V is not a finitary variety--Isbell's result is best possible. The problem of axiomatising V by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of V.Comment: 26 pages. Presentation improve

    From non-commutative diagrams to anti-elementary classes

    Get PDF
    Anti-elementarity is a strong way of ensuring that a class of structures , in a given first-order language, is not closed under elementary equivalence with respect to any infinitary language of the form L \inftyλ\lambda. We prove that many naturally defined classes are anti-elementary, including the following: \bullet the class of all lattices of finitely generated convex {\ell}-subgroups of members of any class of {\ell}-groups containing all Archimedean {\ell}-groups; \bullet the class of all semilattices of finitely generated {\ell}-ideals of members of any nontrivial quasivariety of {\ell}-groups; \bullet the class of all Stone duals of spectra of MV-algebras-this yields a negative solution for the MV-spectrum Problem; \bullet the class of all semilattices of finitely generated two-sided ideals of rings; \bullet the class of all semilattices of finitely generated submodules of modules; \bullet the class of all monoids encoding the nonstable K0K_0-theory of von Neumann regular rings, respectively C*-algebras of real rank zero; \bullet (assuming arbitrarily large Erd"os cardinals) the class of all coordinatizable sectionally complemented modular lattices with a large 4-frame. The main underlying principle is that under quite general conditions, for a functor Φ\Phi : A \rightarrow B, if there exists a non-commutative diagram D of A, indexed by a common sort of poset called an almost join-semilattice, such that \bullet Φ\Phi D^I is a commutative diagram for every set I, \bullet Φ\Phi D is not isomorphic to Φ\Phi X for any commutative diagram X in A, then the range of Φ\Phi is anti-elementary.Comment: 49 pages. Journal of Mathematical Logic, World Scientific Publishing, In pres

    Order, algebra, and structure: lattice-ordered groups and beyond

    Get PDF
    This thesis describes and examines some remarkable relationships existing between seemingly quite different properties (algebraic, order-theoretic, and structural) of ordered groups. On the one hand, it revisits the foundational aspects of the structure theory of lattice-ordered groups, contributing a novel systematization of its relationship with the theory of orderable groups. One of the main contributions in this direction is a connection between validity in varieties of lattice-ordered groups, and orders on groups; a framework is also provided that allows for a systematic account of the relationship between orders and preorders on groups, and the structure theory of lattice-ordered groups. On the other hand, it branches off in new directions, probing the frontiers of several different areas of current research. More specifically, one of the main goals of this thesis is to suitably extend results that are proper to the theory of lattice-ordered groups to the realm of more general, related algebraic structures; namely, distributive lattice-ordered monoids and residuated lattices. The theory of lattice-ordered groups provides themain source of inspiration for this thesis’ contributions on these topics

    Mathematical Structure of Loop Quantum Cosmology: Homogeneous Models

    Full text link
    The mathematical structure of homogeneous loop quantum cosmology is analyzed, starting with and taking into account the general classification of homogeneous connections not restricted to be Abelian. As a first consequence, it is seen that the usual approach of quantizing Abelian models using spaces of functions on the Bohr compactification of the real line does not capture all properties of homogeneous connections. A new, more general quantization is introduced which applies to non-Abelian models and, in the Abelian case, can be mapped by an isometric, but not unitary, algebra morphism onto common representations making use of the Bohr compactification. Physically, the Bohr compactification of spaces of Abelian connections leads to a degeneracy of edge lengths and representations of holonomies. Lifting this degeneracy, the new quantization gives rise to several dynamical properties, including lattice refinement seen as a direct consequence of state-dependent regularizations of the Hamiltonian constraint of loop quantum gravity. The representation of basic operators - holonomies and fluxes - can be derived from the full theory specialized to lattices. With the new methods of this article, loop quantum cosmology comes closer to the full theory and is in a better position to produce reliable predictions when all quantum effects of the theory are taken into account

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page
    corecore