4,258 research outputs found

    The diagonalization method in quantum recursion theory

    Full text link
    As quantum parallelism allows the effective co-representation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one.Comment: 15 pages, completely rewritte

    Undecidability of the Spectral Gap in One Dimension

    Get PDF
    The spectral gap problem - determining whether the energy spectrum of a system has an energy gap above ground state, or if there is a continuous range of low-energy excitations - pervades quantum many-body physics. Recently, this important problem was shown to be undecidable for quantum spin systems in two (or more) spatial dimensions: there exists no algorithm that determines in general whether a system is gapped or gapless, a result which has many unexpected consequences for the physics of such systems. However, there are many indications that one dimensional spin systems are simpler than their higher-dimensional counterparts: for example, they cannot have thermal phase transitions or topological order, and there exist highly-effective numerical algorithms such as DMRG - and even provably polynomial-time ones - for gapped 1D systems, exploiting the fact that such systems obey an entropy area-law. Furthermore, the spectral gap undecidability construction crucially relied on aperiodic tilings, which are not possible in 1D. So does the spectral gap problem become decidable in 1D? In this paper we prove this is not the case, by constructing a family of 1D spin chains with translationally-invariant nearest neighbour interactions for which no algorithm can determine the presence of a spectral gap. This not only proves that the spectral gap of 1D systems is just as intractable as in higher dimensions, but also predicts the existence of qualitatively new types of complex physics in 1D spin chains. In particular, it implies there are 1D systems with constant spectral gap and non-degenerate classical ground state for all systems sizes up to an uncomputably large size, whereupon they switch to a gapless behaviour with dense spectrum.Comment: 7 figure

    Numerical Investigation of Graph Spectra and Information Interpretability of Eigenvalues

    Full text link
    We undertake an extensive numerical investigation of the graph spectra of thousands regular graphs, a set of random Erd\"os-R\'enyi graphs, the two most popular types of complex networks and an evolving genetic network by using novel conceptual and experimental tools. Our objective in so doing is to contribute to an understanding of the meaning of the Eigenvalues of a graph relative to its topological and information-theoretic properties. We introduce a technique for identifying the most informative Eigenvalues of evolving networks by comparing graph spectra behavior to their algorithmic complexity. We suggest that extending techniques can be used to further investigate the behavior of evolving biological networks. In the extended version of this paper we apply these techniques to seven tissue specific regulatory networks as static example and network of a na\"ive pluripotent immune cell in the process of differentiating towards a Th17 cell as evolving example, finding the most and least informative Eigenvalues at every stage.Comment: Forthcoming in 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), Lecture Notes in Bioinformatics, 201

    Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation

    Full text link
    We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.Comment: 17 pages, 18 figures. v2: includes additional references and minor corrections/clarifications. v3: includes additional text, figures, and references (matches published version

    Effective Physical Processes and Active Information in Quantum Computing

    Get PDF
    The recent debate on hypercomputation has arisen new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of "effective physical process" as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information source in accordance with Bell's constraints. On condition that we give up the formal concept of "universality", the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world.Comment: 10 pages; Added references for sections 2 and
    • …
    corecore