673 research outputs found

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Kajian motivasi ekstrinsik di antara Pelajar Lepasan Sijil dan Diploma Politeknik Jabatan Kejuruteraan Awam KUiTTHO

    Get PDF
    Kajian ini dijalankan untuk menyelidiki pengaruh dorongan keluarga, cara pengajaran pensyarah, pengaruh rakan sebaya dan kemudahan infrastruktur terhadap motivasi ekstrinsik bagi pelajar tahun tiga dan tahun empat lepasan sijil dan diploma politeknik Jabatan Kejuruteraan Awain Kolej Universiti Teknologi Tun Hussein Onn. Sampel kajian ini beijumlah 87 orang bagi pelajar lepasan sijil politeknik dan 38 orang bagi lepasan diploma politeknik. Data kajian telah diperolehi melalui borang soal selidik dan telah dianalisis menggunakan perisian SPSS (Statical Package For Sciences). Hasil kajian telah dipersembahkan dalam bentuk jadual dan histohgrapi. Analisis kajian mendapati bahawa kedua-dua kumpulan setuju bahawa faktor-faktor di atas memberi kesan kepada motivasi ekstrinsik mereka. Dengan kata lain faktpr-faktor tersebut penting dalam membentuk pelajar mencapai kecemerlangan akademik

    Analysis of Different Filters for Image Despeckling : A Review

    Get PDF
    Digital image acquisition and processing in clinical diagnosis plays a significant part. Medical images at the time of acquisition can be corrupted via noise. Removal of this noise from images is a challenging problem. The presence of signal dependent noise is referred as speckle which degrades the actual quality of an image. Considering, several techniques have been developed focused on speckle noise reduction. The primary purpose of these techniques was to improve visualization of an image followed by preprocessing step for segmentation, feature extraction and registration. The scope of this paper is to provide an overview of despeckling techniques

    Speckle Noise Reduction in Medical Ultrasound Images

    Get PDF
    Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signaldependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images

    Hyperbolic Wavelet-Fisz denoising for a model arising in Ultrasound Imaging

    Get PDF
    International audienceWe present an algorithm and its fully data-driven extension for noise reduction in ultrasound imaging. Our proposed method computes the hyperbolic wavelet transform of the image, before applying a multiscale variance stabilization technique, via a Fisz transformation. This adapts the wavelet coefficients statistics to the wavelet thresholding paradigm. The aim of the hyperbolic setting is to recover the image while respecting the anisotropic nature of structural details. The data-driven extension removes the need for any prior knowledge of the noise model parameters by estimating the noise variance using an isotonic Nadaraya-Watson estimator. Experiments on synthetic and real data, and comparisons with other noise reduction methods demonstrate the potential of our method at recovering ultrasound images while preserving tissue details. Finally, we emphasize the noise model we consider by applying our variance estimation procedure on real images

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Speckle reducing bilateral filter for cattle follicle segmentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound imaging technology has wide applications in cattle reproduction and has been used to monitor individual follicles and determine the patterns of follicular development. However, the speckles in ultrasound images affect the post-processing, such as follicle segmentation and finally affect the measurement of the follicles. In order to reduce the effect of speckles, a bilateral filter is developed in this paper.</p> <p>Results</p> <p>We develop a new bilateral filter for speckle reduction in ultrasound images for follicle segmentation and measurement. Different from the previous bilateral filters, the proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity difference. We also present the results of follicle segmentation after speckle reduction. Experimental results on both synthetic images and real ultrasound images demonstrate the effectiveness of the proposed filter.</p> <p>Conclusions</p> <p>Compared with the previous bilateral filters, the proposed bilateral filter can reduce speckles in both high-intensity regions and low intensity regions in ultrasound images. The segmentation of the follicles in the speckle reduced images by the proposed method has higher performance than the segmentation in the original ultrasound image, and the images filtered by Gaussian filter, the conventional bilateral filter respectively.</p

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Independent component analysis (ICA) applied to ultrasound image processing and tissue characterization

    Get PDF
    As a complicated ubiquitous phenomenon encountered in ultrasound imaging, speckle can be treated as either annoying noise that needs to be reduced or the source from which diagnostic information can be extracted to reveal the underlying properties of tissue. In this study, the application of Independent Component Analysis (ICA), a relatively new statistical signal processing tool appeared in recent years, to both the speckle texture analysis and despeckling problems of B-mode ultrasound images was investigated. It is believed that higher order statistics may provide extra information about the speckle texture beyond the information provided by first and second order statistics only. However, the higher order statistics of speckle texture is still not clearly understood and very difficult to model analytically. Any direct dealing with high order statistics is computationally forbidding. On the one hand, many conventional ultrasound speckle texture analysis algorithms use only first or second order statistics. On the other hand, many multichannel filtering approaches use pre-defined analytical filters which are not adaptive to the data. In this study, an ICA-based multichannel filtering texture analysis algorithm, which considers both higher order statistics and data adaptation, was proposed and tested on the numerically simulated homogeneous speckle textures. The ICA filters were learned directly from the training images. Histogram regularization was conducted to make the speckle images quasi-stationary in the wide sense so as to be adaptive to an ICA algorithm. Both Principal Component Analysis (PCA) and a greedy algorithm were used to reduce the dimension of feature space. Finally, Support Vector Machines (SVM) with Radial Basis Function (RBF) kernel were chosen as the classifier for achieving best classification accuracy. Several representative conventional methods, including both low and high order statistics based methods, and both filtering and non-filtering methods, have been chosen for comparison study. The numerical experiments have shown that the proposed ICA-based algorithm in many cases outperforms other algorithms for comparison. Two-component texture segmentation experiments were conducted and the proposed algorithm showed strong capability of segmenting two visually very similar yet different texture regions with rather fuzzy boundaries and almost the same mean and variance. Through simulating speckle with first order statistics approaching gradually to the Rayleigh model from different non-Rayleigh models, the experiments to some extent reveal how the behavior of higher order statistics changes with the underlying property of tissues. It has been demonstrated that when the speckle approaches the Rayleigh model, both the second and higher order statistics lose the texture differentiation capability. However, when the speckles tend to some non-Rayleigh models, methods based on higher order statistics show strong advantage over those solely based on first or second order statistics. The proposed algorithm may potentially find clinical application in the early detection of soft tissue disease, and also be helpful for better understanding ultrasound speckle phenomenon in the perspective of higher order statistics. For the despeckling problem, an algorithm was proposed which adapted the ICA Sparse Code Shrinkage (ICA-SCS) method for the ultrasound B-mode image despeckling problem by applying an appropriate preprocessing step proposed by other researchers. The preprocessing step makes the speckle noise much closer to the real white Gaussian noise (WGN) hence more amenable to a denoising algorithm such as ICS-SCS that has been strictly designed for additive WGN. A discussion is given on how to obtain the noise-free training image samples in various ways. The experimental results have shown that the proposed method outperforms several classical methods chosen for comparison, including first or second order statistics based methods (such as Wiener filter) and multichannel filtering methods (such as wavelet shrinkage), in the capability of both speckle reduction and edge preservation
    corecore