7,189 research outputs found

    A Middleware Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a middleware framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to Middleware 0

    A Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to ICAC-0

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta

    Autonomic management of multiple non-functional concerns in behavioural skeletons

    Full text link
    We introduce and address the problem of concurrent autonomic management of different non-functional concerns in parallel applications build as a hierarchical composition of behavioural skeletons. We first define the problems arising when multiple concerns are dealt with by independent managers, then we propose a methodology supporting coordinated management, and finally we discuss how autonomic management of multiple concerns may be implemented in a typical use case. The paper concludes with an outline of the challenges involved in realizing the proposed methodology on distributed target architectures such as clusters and grids. Being based on the behavioural skeleton concept proposed in the CoreGRID GCM, it is anticipated that the methodology will be readily integrated into the current reference implementation of GCM based on Java ProActive and running on top of major grid middleware systems.Comment: 20 pages + cover pag

    System-of-Systems Complexity

    Full text link
    The global availability of communication services makes it possible to interconnect independently developed systems, called constituent systems, to provide new synergistic services and more efficient economic processes. The characteristics of these new Systems-of-Systems are qualitatively different from the classic monolithic systems. In the first part of this presentation we elaborate on these differences, particularly with respect to the autonomy of the constituent systems, to dependability, continuous evolution, and emergence. In the second part we look at a SoS from the point of view of cognitive complexity. Cognitive complexity is seen as a relation between a model of an SoS and the observer. In order to understand the behavior of a large SoS we have to generate models of adequate simplicity, i.e, of a cognitive complexity that can be handled by the limited capabilities of the human mind. We will discuss the importance of properly specifying and placing the relied-upon message interfaces between the constituent systems that form an open SoS and discuss simplification strategies that help to reduce the cognitive complexity.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    A Generic Storage API

    Get PDF
    We present a generic API suitable for provision of highly generic storage facilities that can be tailored to produce various individually customised storage infrastructures. The paper identifies a candidate set of minimal storage system building blocks, which are sufficiently simple to avoid encapsulating policy where it cannot be customised by applications, and composable to build highly flexible storage architectures. Four main generic components are defined: the store, the namer, the caster and the interpreter. It is hypothesised that these are sufficiently general that they could act as building blocks for any information storage and retrieval system. The essential characteristics of each are defined by an interface, which may be implemented by multiple implementing classes.Comment: Submitted to ACSC 200

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636
    • …
    corecore