862 research outputs found

    TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and ISA

    Full text link
    Memory consistency models (MCMs) which govern inter-module interactions in a shared memory system, are a significant, yet often under-appreciated, aspect of system design. MCMs are defined at the various layers of the hardware-software stack, requiring thoroughly verified specifications, compilers, and implementations at the interfaces between layers. Current verification techniques evaluate segments of the system stack in isolation, such as proving compiler mappings from a high-level language (HLL) to an ISA or proving validity of a microarchitectural implementation of an ISA. This paper makes a case for full-stack MCM verification and provides a toolflow, TriCheck, capable of verifying that the HLL, compiler, ISA, and implementation collectively uphold MCM requirements. The work showcases TriCheck's ability to evaluate a proposed ISA MCM in order to ensure that each layer and each mapping is correct and complete. Specifically, we apply TriCheck to the open source RISC-V ISA, seeking to verify accurate, efficient, and legal compilations from C11. We uncover under-specifications and potential inefficiencies in the current RISC-V ISA documentation and identify possible solutions for each. As an example, we find that a RISC-V-compliant microarchitecture allows 144 outcomes forbidden by C11 to be observed out of 1,701 litmus tests examined. Overall, this paper demonstrates the necessity of full-stack verification for detecting MCM-related bugs in the hardware-software stack.Comment: Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating System

    A simple modern correctness condition for a space-based high-performance multiprocessor

    Get PDF
    A number of U.S. national programs, including space-based detection of ballistic missile launches, envisage putting significant computing power into space. Given sufficient progress in low-power VLSI, multichip-module packaging and liquid-cooling technologies, we will see design of high-performance multiprocessors for individual satellites. In very high speed implementations, performance depends critically on tolerating large latencies in interprocessor communication; without latency tolerance, performance is limited by the vastly differing time scales in processor and data-memory modules, including interconnect times. The modern approach to tolerating remote-communication cost in scalable, shared-memory multiprocessors is to use a multithreaded architecture, and alter the semantics of shared memory slightly, at the price of forcing the programmer either to reason about program correctness in a relaxed consistency model or to agree to program in a constrained style. The literature on multiprocessor correctness conditions has become increasingly complex, and sometimes confusing, which may hinder its practical application. We propose a simple modern correctness condition for a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and the parallel programming system

    Formally specifying memory consistency models and automatically generating executable specifications

    Get PDF
    technical reportMemory ordering properties of shared memory multiprocessors are more subtle and less well understood than cache coherence. These properties tend to be processor or platform specific and are not always formally specified. It is difficult to compare even those platforms whose memory ordering properties have been clearly specified as each such platform is usually specified in its own definitional framework. We present a generic and formal specification scheme to specify any realistic memory consistency model that gives an intuitive undertstanding to architects, and implementors of platforms whose memory model is being defined and also a common definitional framework to compare memory models. Another contribution of the paper is to generate an executable specification automatically, given the specification of any memory consistency model expressed in our newly defined framework. This alternative specification can be used to generate all possible outcomes of small assembly-language multiprocessor programs in a given memory model, which is very helpful for understanding the subtleties of the model. The executable specification can also check the correctness of assembly language programs including synchronization routines

    A Separation Logic for Fictional Sequential Consistency

    Get PDF
    To improve performance, modern multiprocessors and pro- gramming languages typically implement relaxed memory models that do not require all processors/threads to observe memory operations in the same order. To relieve programmers from having to reason directly about these relaxed behaviors, languages often provide efficient synchro- nization primitives and concurrent data structures with stronger high- level guarantees about memory reorderings. For instance, locks usually ensure that when a thread acquires a lock, it can observe all memory operations of the releasing thread, prior to the release. When used cor- rectly, these synchronization primitives and data structures allow clients to recover a fiction of a sequentially consistent memory model. In this paper we propose a new proof system, iCAP-TSO, that captures this fiction formally, for a language with a TSO memory model. The logic supports reasoning about libraries that directly exploit the relaxed memory model to achieve maximum efficiency. When these libraries pro- vide sufficient guarantees, the logic hides the underlying complexity and admits standard separation logic rules for reasoning about their more high-level clients

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Avalanche: A communication and memory architecture for scalable parallel computing

    Get PDF
    technical reportAs the gap between processor and memory speeds widens, system designers will inevitably incorporate increasingly deep memory hierarchies to maintain the balance between processor and memory system performance. At the same time, most communication subsystems are permitted access only to main memory and not a processor's top level cache. As memory latencies increase, this lack of integration between the memory and communication systems will seriously impede interprocessor communication performance and limit effective scalability. In the Avalanche project we are redesigning the memory architecture of a commercial RISC multiprocessor, the HP PA-RISC 7100, to include a new multi-level context sensitive cache that is tightly coupled to the communication fabric. The primary goal of Avalanche's integrated cache and communication controller is attacking end to end communication latency in all of its forms. This includes cache misses induced by excessive invalidations and reloading of shared data by write-invalidate coherence protocols and cache misses induced by depositing incoming message data in main memory and faulting it into the cache. An execution-driven simulation study of Avalanche's architecture indicates that it can reduce cache stalls by 5-60% and overall execution times by 10-28%
    • …
    corecore