314 research outputs found

    Modelling and analysing user views of telecommunications services

    Get PDF
    User views of calls are modelled by behaviour trees, which are synchronised to form a network of users. High level presentations of the models are given using process algebra and an explicit theory of features, including precedences. These precedences abstractly encapsulate the possible state spaces which result from different combinations of features. The high level presentation supports incremental development of features and testing and experimentation through animation. Interactions which are not detected during the experimentation phase may be found through static analysis of the high level presentation, through dynamic analysis of the under-lying low level transition system, and through verification of temporal properties through model-checking. In each case, interactions are resolved through manipulation of the feature precedences

    Automated Analysis and Implementation of Composed Grid Services

    Get PDF
    Service composition allows web services to be combined into new ones. Web service composition is increasingly common in mission-critical applications. It has therefore become important to verify the correctness of web service composition using formal methods. The composition of grid services is a similar but new goal. We have previously developed an abstract graphical notation called CRESS for describing composite grid services. We have demonstrated that it is feasible to automatically generate service implementations as well as formal specifications from CRESS descriptions. The automated service implementations use orchestration code in BPEL, along with the service interfaces and data types in WSDL and XSD respectively for all services. CRESS-generated BPEL implementations currently do not useWSRF features such as implicit endpoint references for WS-Resources and interfacing to standard WSRF port types. CRESS-generated formal models use the standardised process algebra LOTOS. Service behaviour is modelled by processes, while service data types are modelled as abstract data types. Simulation and validation of the generated LOTOS specifications can be performed. In this paper, we illustrate how CRESS can be further extended to improve its generation of service compositions, specifically for WSRF services implemented using Globus Toolkit 4. We also show how to facilitate use of the generated LOTOS specifications with the CADP toolbox

    What use are formal design and analysis methods to telecommunications services?

    Get PDF
    Have formal methods failed, or will they fail, to help us solve problems of detecting and resolving of feature interactions in telecommunications software? This paper contains SWOT(Strengths, Weaknesses, Opportunities and Threats) analysis of the use of formula design and analysis methods in feature interaction analysis and makes some suggestions for future research

    Formally-Based Design Evaluation (extended version)

    Get PDF
    This paper investigates specification, verification and test generation for synchronous and asynchronous circuits. The approach is called DILL (Digital Logic in LOTOS). DILL models are discussed for synchronous and asynchronous circuits. Relations for (strong) conformance are defined for verifying a design specification against a high-level specification. An algorithm is also outlined for generating and applying implementation tests based on a specification. Tools have been developed for automated test generation and verification of conformance between an implementation and its specification. The approach is illustrated with various benchmark circuits as case studies

    Modular Feature Specification

    Get PDF
    CRESS (CHISEL Representation Employing Systematic Specification) is a notation and set of tools for graphical specification and analysis of features. It is applicable wherever a system consists of base functionality to which are added optionally selected features. The CRESS notation is introduced for basic diagrams, feature diagrams, and rules governing their behaviour. Although telephony is used to illustrate the approach, CRESS is not limited to this domain. The structure and use of the portable CRESS toolset is explained. CRESS can generate code for a variety of target languages. The strategy for translation to LOTOS is presented, along with some techniques for analysing the generated specifications

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0

    Formalising the Chisel Feature Notation

    Get PDF
    The CHISEL notation was developed by Bellcore as an informal graphical notation for describing telecomms services and features. CRESS (CHISEL Representation Employing Systematic Specification) is an enhanced version of CHISEL with tightly defined rules for the syntax and static semantics of diagrams. More importantly, CRESS has formal denotations given by SDL (Specification and Description Language) and LOTOS (Language Of Temporal Ordering Specification). This permits rigorous checking, analysis and prototyping of descriptions. The accompanying toolset has been written in an open and extensible manner

    Specifying and Realising Interactive Voice Services

    Get PDF
    VoiceXML (Voice Extended Markup Language) has become a major force in interactive voice services. However current approaches to creating Voice-XML services are rather low-level. Graphical representations of VoiceXML are close to the textual form of the language, and do not give a high-level description of a service. CRESS (Chisel Representation Employing Systematic Specification) can be used to give a more abstract, language-independent view of interactive voice services. CRESS is automatically compiled into VoiceXML for implementation, and into LOTOS (Language Of Temporal Ordering Specification) or SDL (Specification and Description Language) for automated analysis. The paper explains how CRESS is translated into VoiceXML and LOTOS

    Analysis of a Multimedia Stream using Stochastic Process Algebra

    Get PDF
    It is now well recognised that the next generation of distributed systems will be distributed multimedia systems. Central to multimedia systems is quality of service, which defines the non-functional requirements on the system. In this paper we investigate how stochastic process algebra can be used in order to determine the quality of service properties of distributed multimedia systems. We use a simple multimedia stream as our basic example. We describe it in the Stochastic Process Algebra PEPA and then we analyse whether the stream satisfies a set of quality of service parameters: throughput, end-to-end latency, jitter and error rates
    • …
    corecore