12,928 research outputs found

    Distributed eventual leader election in the crash-recovery and general omission failure models.

    Get PDF
    102 p.Distributed applications are present in many aspects of everyday life. Banking, healthcare or transportation are examples of such applications. These applications are built on top of distributed systems. Roughly speaking, a distributed system is composed of a set of processes that collaborate among them to achieve a common goal. When building such systems, designers have to cope with several issues, such as different synchrony assumptions and failure occurrence. Distributed systems must ensure that the delivered service is trustworthy.Agreement problems compose a fundamental class of problems in distributed systems. All agreement problems follow the same pattern: all processes must agree on some common decision. Most of the agreement problems can be considered as a particular instance of the Consensus problem. Hence, they can be solved by reduction to consensus. However, a fundamental impossibility result, namely (FLP), states that in an asynchronous distributed system it is impossible to achieve consensus deterministically when at least one process may fail. A way to circumvent this obstacle is by using unreliable failure detectors. A failure detector allows to encapsulate synchrony assumptions of the system, providing (possibly incorrect) information about process failures. A particular failure detector, called Omega, has been shown to be the weakest failure detector for solving consensus with a majority of correct processes. Informally, Omega lies on providing an eventual leader election mechanism

    Achieving Robust Self-Management for Large-Scale Distributed Applications

    Get PDF
    Autonomic managers are the main architectural building blocks for constructing self-management capabilities of computing systems and applications. One of the major challenges in developing self-managing applications is robustness of management elements which form autonomic managers. We believe that transparent handling of the effects of resource churn (joins/leaves/failures) on management should be an essential feature of a platform for self-managing large-scale dynamic distributed applications, because it facilitates the development of robust autonomic managers and hence improves robustness of self-managing applications. This feature can be achieved by providing a robust management element abstraction that hides churn from the programmer. In this paper, we present a generic approach to achieve robust services that is based on finite state machine replication with dynamic reconfiguration of replica sets. We contribute a decentralized algorithm that maintains the set of nodes hosting service replicas in the presence of churn. We use this approach to implement robust management elements as robust services that can operate despite of churn. Our proposed decentralized algorithm uses peer-to-peer replica placement schemes to automate replicated state machine migration in order to tolerate churn. Our algorithm exploits lookup and failure detection facilities of a structured overlay network for managing the set of active replicas. Using the proposed approach, we can achieve a long running and highly available service, without human intervention, in the presence of resource churn. In order to validate and evaluate our approach, we have implemented a prototype that includes the proposed algorithm

    Analyzing eventual leader election protocols for dynamic systems by probabilistic model checking

    Get PDF
    Leader election protocols have been intensively studied in distributed computing, mostly in the static setting. However, it remains a challenge to design and analyze these protocols in the dynamic setting, due to its high uncertainty, where typical properties include the average steps of electing a leader eventually, the scalability etc. In this paper, we propose a novel model-based approach for analyzing leader election protocols of dynamic systems based on probabilistic model checking. In particular, we employ a leading probabilistic model checker, PRISM, to simulate representative protocol executions. We also relax the assumptions of the original model to cover unreliable channels which requires the introduction of probability to our model. The experiments confirm the feasibility of our approach

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta
    • …
    corecore