18,946 research outputs found

    Distributed Access Control for Web and Business Processes

    Get PDF
    Middleware influenced the research community in developing a number of systems for controlling access to distributed resources. Nowadays a new paradigm for the lightweight integration of business resources from different partners is starting to take hold – Web Services and Business Processes for Web Services. Security and access control policies for Web Services protocols and distributed systems are well studied and almost standardized, but there is not yet a comprehensive proposal for an access control architecture for business processes. So, it is worth looking at the available approaches to distributed authorization as a starting point for a better understanding of what they already have and what they still need to address the security challenges for business processes

    The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux

    Get PDF
    The increasing availability of cloud computing and scientific super computers brings great potential for making R accessible through public or shared resources. This allows us to efficiently run code requiring lots of cycles and memory, or embed R functionality into, e.g., systems and web services. However some important security concerns need to be addressed before this can be put in production. The prime use case in the design of R has always been a single statistician running R on the local machine through the interactive console. Therefore the execution environment of R is entirely unrestricted, which could result in malicious behavior or excessive use of hardware resources in a shared environment. Properly securing an R process turns out to be a complex problem. We describe various approaches and illustrate potential issues using some of our personal experiences in hosting public web services. Finally we introduce the RAppArmor package: a Linux based reference implementation for dynamic sandboxing in R on the level of the operating system

    Towards Model-Driven Development of Access Control Policies for Web Applications

    Get PDF
    We introduce a UML-based notation for graphically modeling systems’ security aspects in a simple and intuitive way and a model-driven process that transforms graphical specifications of access control policies in XACML. These XACML policies are then translated in FACPL, a policy language with a formal semantics, and the resulting policies are evaluated by means of a Java-based software tool

    Formalisation and Implementation of the XACML Access Control Mechanism

    Get PDF
    We propose a formal account of XACML, an OASIS standard adhering to the Policy Based Access Control model for the specifica- tion and enforcement of access control policies. To clarify all ambiguous and intricate aspects of XACML, we provide it with a more manageable alternative syntax and with a solid semantic ground. This lays the basis for developing tools and methodologies which allow software engineers to easily and precisely regulate access to resources using policies. To demonstrate feasibility and effectiveness of our approach, we provide a software tool, supporting the specification and evaluation of policies and access requests, whose implementation fully relies on our formal development
    corecore