278 research outputs found

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    A JML-Based strategy for incorporating formal specifications into the software development process

    Get PDF
    This thesis presents a JML-based strategy that incorporates formal specifications into the software development process of object-oriented programs. The strategy evolves functional requirements into a “semi-formal” requirements form, and then expressing them as JML formal specifications. The strategy is implemented as a formal-specification pseudo-phase that runs in parallel with the other phase of software development. What makes our strategy different from other software development strategies used in literature is the particular use of JML specifications we make all along the way from requirements to validation-and-verification.Orientador: Néstor Catañ

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Formal specification with JML

    Get PDF
    This text is a general, self contained, and tool independent introduction into the Java Modeling Language, JML. It is a preview of a chapter planned to appear in a book about the KeY approach and tool to the verification of Java software. JML is the dominating starting point of KeY style Java verification. However, this paper does not in any way depend on any tool nor verification methodology. Other chapters in this book talk about the usage of JML in KeY style verification. Here, we only refer to KeY in very few places, without relying on it. This introduction is written for all readers with an interest in formal specification of software in general, and anyone who wants to learn about the JML approach to specification in particular. The authors appreciate any comments or questions that help to improve the text

    Proceedings of the Resolve Workshop 2006

    Get PDF
    The aim of the RESOLVE Workshop 2006 was to bring together researchers and educators interested in: Refining formal approaches to software engineering, especially component-based systems, and introducing them into the classroom. The workshop served as a forum for participants to present and discuss recent advances, trends, and concerns in these areas, as well as formulate a common understanding of emerging research issues and possible solution paths

    Specifying and verifying heap space allocation with JML and ESC/Java2

    Get PDF
    We examine JML’s support for specifying the heap space allocation of Java programs. In this report we restrict ourselves to specifying and verifying only allocation but not de-allocation. We identify some problems with with JML’s support and suggest alternatives. Also, we describe an implementation of heap space allocation verification in ESC/Java2. This implementation has been tested on small examples

    What good are strong specifications?

    Full text link
    Abstract—Experience with lightweight formal methods suggests that programmers are willing to write specification if it brings tangible benefits to their usual development activities. This paper considers stronger specifications and studies whether they can be deployed as an incremental practice that brings additional benefits without being unacceptably expensive. We introduce a methodology that extends Design by Contract to write strong specifications of functional properties in the form of preconditions, postconditions, and invariants. The methodology aims at being palatable to developers who are not fluent in formal techniques but are comfortable with writing simple specifications. We evaluate the cost and the benefits of using strong specifications by applying the methodology to testing data structure implementations written in Eiffel and C#. In our extensive experiments, testing against strong specifications detects twice as many bugs as standard contracts, with a reasonable overhead in terms of annotation burden and runtime performance while testing. In the wide spectrum of formal techniques for software quality, testing against strong specifications lies in a “sweet spot ” with a favorable benefit to effort ratio. I

    Aspects of Java program verification

    Get PDF
    corecore