32,472 research outputs found

    Type-Directed Program Transformations for the Working Functional Programmer

    Get PDF
    We present preliminary research on Deuce+, a set of tools integrating plain text editing with structural manipulation that brings the power of expressive and extensible type-directed program transformations to everyday, working programmers without a background in computer science or mathematical theory. Deuce+ comprises three components: (i) a novel set of type-directed program transformations, (ii) support for syntax constraints for specifying "code style sheets" as a means of flexibly ensuring the consistency of both the concrete and abstract syntax of the output of program transformations, and (iii) a domain-specific language for specifying program transformations that can operate at a high level on the abstract (and/or concrete) syntax tree of a program and interface with syntax constraints to expose end-user options and alleviate tedious and potentially mutually inconsistent style choices. Currently, Deuce+ is in the design phase of development, and discovering the right usability choices for the system is of the highest priority

    Bioinformatics service reconciliation by heterogeneous schema transformation

    Get PDF
    This paper focuses on the problem of bioinformatics service reconciliation in a generic and scalable manner so as to enhance interoperability in a highly evolving field. Using XML as a common representation format, but also supporting existing flat-file representation formats, we propose an approach for the scalable semi-automatic reconciliation of services, possibly invoked from within a scientific workflows tool. Service reconciliation may use the AutoMed heterogeneous data integration system as an intermediary service, or may use AutoMed to produce services that mediate between services. We discuss the application of our approach for the reconciliation of services in an example bioinformatics workflow. The main contribution of this research is an architecture for the scalable reconciliation of bioinformatics services

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Data Model and Query Constructs for Versatile Web Query Languages

    Get PDF
    As the Semantic Web is gaining momentum, the need for truly versatile query languages becomes increasingly apparent. A Web query language is called versatile if it can access in the same query program data in different formats (e.g. XML and RDF). Most query languages are not versatile: they have not been specifically designed to cope with both worlds, providing a uniform language and common constructs to query and transform data in various formats. Moreover, most of them do not provide a flexible data model that is powerful enough to naturally convey both Semantic Web data formats (especially RDF and Topic Maps) and XML. This article highlights challenges related to the data model and language constructs for querying both standard Web and Semantic Web data with an emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data model and querying constructs are particularly well-suited for the Semantic Web, but that some adjustments of the Xcerpt syntax allow for even more effective and natural querying of RDF and Topic Maps

    ApproXFILTER - an approximative XML filter

    Get PDF
    Publish/subscribe systems filter published documents and inform their subscribers about documents matching their interests. Recent systems have focussed on documents or messages sent in XML format. Subscribers have to be familiar with the underlying XML format to create meaningful subscriptions. A service might support several providers with slightly differing formats, e.g., several publishers of books. This makes the definition of a successful subscription almost impossible. We propose the use of an approximative language for subscriptions.We introduce the design our ApproXFILTER algorithm for approximative filtering in a pub/sub system. We present the results of our analysis of a prototypical implementation

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved

    An Entailment Relation for Reasoning on the Web

    Get PDF
    Reasoning on the Web is receiving an increasing attention because of emerging fields such as Web adaption and Semantic Web. Indeed, the advanced functionalities striven for in these fields call for reasoning capabilities. Reasoning on the Web, however, is usually done using existing techniques rarely fitting the Web. As a consequence, additional data processing like data conversion from Web formats (e.g. XML or HTML) into some other formats (e.g. classical logic terms and formulas) is often needed and aspects of the Web (e.g. its inherent inconsistency) are neglected. This article first gives requirements for an entailment tuned to reasoning on the Web. Then, it describes how classical logic’s entailment can be modified so as to enforce these requirements. Finally, it discusses how the proposed entailment can be used in applying logic programming to reasoning on the Web

    Mapping and Displaying Structural Transformations between XML and PDF

    Get PDF
    Documents are often marked up in XML-based tagsets to delineate major structural components such as headings, paragraphs, figure captions and so on, without much regard to their eventual displayed appearance. And yet these same abstract documents, after many transformations and 'typesetting' processes, often emerge in the popular format of Adobe PDF, either for dissemination or archiving. Until recently PDF has been a totally display-based document representation, relying on the underlying PostScript semantics of PDF. Early versions of PDF had no mechanism for retaining any form of abstract document structure but recent releases have now introduced an internal structure tree to create the so called 'Tagged PDF'. This paper describes the development of a plugin for Adobe Acrobat which creates a two-window display. In one window is shown an XML document original and in the other its Tagged PDF counterpart is seen, with an internal structure tree that, in some sense, matches the one seen in XML. If a component is highlighted in either window then the corresponding structured item, with any attendant text, is also highlighted in the other window. Important applications of correctly Tagged PDF include making PDF documents reflow intelligently on small screen devices and enabling them to be read out in correct reading order, via speech synthesiser software, for the visually impaired. By tracing structure transformation from source document to destination one can implement the repair of damaged PDF structure or the adaptation of an existing structure tree to an incrementally updated document
    corecore