588 research outputs found

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    transML: A Family of Languages to Model Model Transformations

    Get PDF
    Proceedings of: 13th International Conference on Model Driven Engineering Languages and Systems, MODELS 2010, Oslo, Norway, October 3-8, 2010Model transformation is one of the pillars of Model-Driven Engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. However, there is a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life-cycle of transformation development. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for specific transformation implementation languages.Work funded by the Spanish Ministry of Science (project TIN2008-02081 and grants JC2009-00015,PR2009-0019), the R&Dprogramme of the Madrid Region (project S2009/TIC-1650), and the European Commission’s 7th Framework programme (grants #218575 (INESS), #248864 (MADES))

    Graph Based Verification of Software Evolution Requirements

    Get PDF
    Due to market demands and changes in the environment, software systems have to evolve. However, the size and complexity of the current software systems make it time consuming to incorporate changes. During our collaboration with the industry, we observed that the developers spend much time on the following evolution problems: designing runtime reconfigurable software, obeying software design constraints while coping with evolution, reusing old software solutions for new evolution problems. This thesis presents 3 processes and tool suits that aid the developers/designers when tackling these problems.\ud The first process and tool set allow early verification of runtime reconfiguration requirements. In this process the UML models are converted into a graph-based model. The execution semantics of UML are modeled by graph transformation rules. Using these graph transformation rules, the execution of the UML models is simulated. The simulation generates a state-space showing all possible reconfigurations. The runtime reconfiguration requirements are expressed by computational tree logic or with a visual state-based language, which are verified over the generated state-space. When the verification fails a feedback on the problem is provided.\ud The second process and tool set are developed for computer aided detection of static program constraint violations. We developed a modeling language called Source Code Modeling Language (SCML) in which program elements from the source code can be represented. In the proposed process for constraint violation detection, the source code is converted into SCML models. The constraint detection is realized by graph transformation rules. The rules detect the violation and extract information from the SCML model to provide feedback on the location of the problem.\ud The third process and tool set provide computer aided verification of whether a design idiom can be used to implement a change request. The developers tend to implement evolution requests using software structures that are familiar to them; called design idioms. Graph transformations are used for detecting whether the constraints of the design idiom are satisfied or not. For a given design idiom and given source files in SCML, the implementation of the idiom is simulated. If the simulation succeeds, then the models are converted to source code.\u

    Model Driven Communication Protocol Engineering and Simulation based Performance Analysis using UML 2.0

    Get PDF
    The automated functional and performance analysis of communication systems specified with some Formal Description Technique has long been the goal of telecommunication engineers. In the past SDL and Petri nets have been the most popular FDTs for the purpose. With the growth in popularity of UML the most obvious question to ask is whether one can translate one or more UML diagrams describing a system to a performance model. Until the advent of UML 2.0, that has been an impossible task since the semantics were not clear. Even though the UML semantics are still not clear for the purpose, with UML 2.0 now released and using ITU recommendation Z.109, we describe in this dissertation a methodology and tool called proSPEX (protocol Software Performance Engineering using XMI), for the design and performance analysis of communication protocols specified with UML. Our first consideration in the development of our methodology was to identify the roles of UML 2.0 diagrams in the performance modelling process. In addition, questions regarding the specification of non-functional duration contraints, or temporal aspects, were considered. We developed a semantic time model with which a lack of means of specifying communication delay and processing times in the language are addressed. Environmental characteristics such as channel bandwidth and buffer space can be specified and realistic assumptions are made regarding time and signal transfer. With proSPEX we aimed to integrate a commercial UML 2.0 model editing tool and a discrete-event simulation library. Such an approach has been advocated as being necessary in order to develop a closer integration of performance engineering with formal design and implementation methodologies. In order to realize the integration we firstly identified a suitable simulation library and then extended the library with features required to represent high-level SDL abstractions, such as extended finite state machines (EFSM) and signal addressing. In implementing proSPEX we filtered the XML output of our editor and used text templates for code generation. The filtering of the XML output and the need to extend our simulation library with EFSM abstractions was found to be significant implementation challenges. Lastly, in order to to illustrate the utility of proSPEX we conducted a performance analysis case-study in which the efficient short remote operations (ESRO) protocol is used in a wireless e-commerce scenario

    First European Workshop on Composition of Model Transformations - CMT 2006

    Get PDF

    Using UML Models for the Performance Analysis of Network Systems

    Get PDF
    The automated functional and performance analysis of communication systems specified with some Formal Description Technique has long been the goal of telecommunication engineers. In the past SDL and Petri nets have been the most popular FDTs for the purpose. With the growth in popularity of UML the most obvious question to ask is whether one can translate one or more UML diagrams describing a system to a performance model. Until the advent of UML 2.0, that has been an impossible task since the semantics were not clear. Even though the UML semantics is still not clear for the purpose, with UML 2.0 now released and using ITU recommendation Z.109, we describe in this paper a methodology and tool called proSPEX, for the design and performance analysis of communication protocols specified with UML

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite
    • …
    corecore