32,040 research outputs found

    Key Management Building Blocks for Wireless Sensor Networks

    Get PDF
    Cryptography is the means to ensure data confidentiality, integrity and authentication in wireless sensor networks (WSNs). To use cryptography effectively however, the cryptographic keys need to be managed properly. First of all, the necessary keys need to be distributed to the nodes before the nodes are deployed in the field, in such a way that any two or more nodes that need to communicate securely can establish a session key. Then, the session keys need to be refreshed from time to time to prevent birthday attacks. Finally, in case any of the nodes is found to be compromised, the key ring of the compromised node needs to be revoked and some or all of the compromised keys might need to be replaced. These processes, together with the policies and techniques needed to support them, are called key management. The facts that WSNs (1) are generally not tamper-resistant; (2) operate unattended; (3) communicate in an open medium; (4) have no fixed infrastructure and pre-configured topology; (5) have severe hardware and resource constraints, present unique challenges to key management. In this article, we explore techniques for meeting these challenges. What distinguishes our approach from a routine literature survey is that, instead of comparing various known schemes, we set out to identify the basic cryptographic principles, or building blocks that will allow practitioners to set up their own key management framework using these building blocks

    A standard-driven communication protocol for disconnected clinics in rural areas

    Get PDF
    The importance of the Electronic Health Record (EHR), which stores all healthcare-related data belonging to a patient, has been recognized in recent years by governments, institutions, and industry. Initiatives like Integrating the Healthcare Enterprise (IHE) have been developed for the definition of standard methodologies for secure and interoperable EHR exchanges among clinics and hospitals. Using the requisites specified by these initiatives, many large-scale projects have been set up to enable healthcare professionals to handle patients' EHRs. Applications deployed in these settings are often considered safety-critical, thus ensuring such security properties as confidentiality, authentication, and authorization is crucial for their success. In this paper, we propose a communication protocol, based on the IHE specifications, for authenticating healthcare professionals and assuring patients' safety in settings where no network connection is available, such as in rural areas of some developing countries. We define a specific threat model, driven by the experience of use cases covered by international projects, and prove that an intruder cannot cause damages to the safety of patients and their data by performing any of the attacks falling within this threat model. To demonstrate the feasibility and effectiveness of our protocol, we have fully implemented it

    Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration

    Full text link
    We present an overview of quantum key distribution (QKD), a secure key exchange method based on the quantum laws of physics rather than computational complexity. We also provide an overview of the two most widely used commodity security protocols, IPsec and TLS. Pursuing a key exchange model, we propose how QKD could be integrated into these security applications. For such a QKD integration we propose a support layer that provides a set of common QKD services between the QKD protocol and the security applicationsComment: 12Page

    Value-driven Security Agreements in Extended Enterprises

    Get PDF
    Today organizations are highly interconnected in business networks called extended enterprises. This is mostly facilitated by outsourcing and by new economic models based on pay-as-you-go billing; all supported by IT-as-a-service. Although outsourcing has been around for some time, what is now new is the fact that organizations are increasingly outsourcing critical business processes, engaging on complex service bundles, and moving infrastructure and their management to the custody of third parties. Although this gives competitive advantage by reducing cost and increasing flexibility, it increases security risks by eroding security perimeters that used to separate insiders with security privileges from outsiders without security privileges. The classical security distinction between insiders and outsiders is supplemented with a third category of threat agents, namely external insiders, who are not subject to the internal control of an organization but yet have some access privileges to its resources that normal outsiders do not have. Protection against external insiders requires security agreements between organizations in an extended enterprise. Currently, there is no practical method that allows security officers to specify such requirements. In this paper we provide a method for modeling an extended enterprise architecture, identifying external insider roles, and for specifying security requirements that mitigate security threats posed by these roles. We illustrate our method with a realistic example

    Compiling symbolic attacks to protocol implementation tests

    Full text link
    Recently efficient model-checking tools have been developed to find flaws in security protocols specifications. These flaws can be interpreted as potential attacks scenarios but the feasability of these scenarios need to be confirmed at the implementation level. However, bridging the gap between an abstract attack scenario derived from a specification and a penetration test on real implementations of a protocol is still an open issue. This work investigates an architecture for automatically generating abstract attacks and converting them to concrete tests on protocol implementations. In particular we aim to improve previously proposed blackbox testing methods in order to discover automatically new attacks and vulnerabilities. As a proof of concept we have experimented our proposed architecture to detect a renegotiation vulnerability on some implementations of SSL/TLS, a protocol widely used for securing electronic transactions.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part
    corecore