183,296 research outputs found

    Extending ASSERT for HW/SW Co-design

    Get PDF
    Embedded systems are commonly designed by specifying and developing hardware and software systems separately. On the contrary, the hardware/software (HW/SW) co-development exploits the trade-offs between hardware and software in a system through their concurrent design. HW/SW Codevelopment techniques take advantage of the flexibility of system design to create architectures that can meet stringent performance requirements with a shorter design cycle. This paper presents the work done within the scope of ESA HWSWCO (Hardware-Software Co-design) study. The main objective of this study has been to address the HW/SW co-design phase to integrate this engineering task as part of the ASSERT process (refer to [1]) and compatible with the existing ASSERT approach, process and tool, Advances in the automation of the design of HW and SW and the adoption of the Model Driven Architecture (MDA) [9] paradigm make possible the definition of a proper integration substrate and enables the continuous interaction of the HW and SW design paths

    Towards a scope management of non-functional requirements in requirements engineering

    Get PDF
    Getting business stakeholders’ goals formulated clearly and project scope defined realistically increases the chance of success for any application development process. As a consequence, stakeholders at early project stages acquire as much as possible knowledge about the requirements, their risk estimates and their prioritization. Current industrial practice suggests that in most software projects this scope assessment is performed on the user’s functional requirements (FRs), while the non-functional requirements (NFRs) remain, by and large, ignored. However, the increasing software complexity and competition in the software industry has highlighted the need to consider NFRs as an integral part of software modeling and development. This paper contributes towards harmonizing the need to build the functional behavior of a system with the need to model the associated NFRs while maintaining a scope management for NFRs. The paper presents a systematic and precisely defined model towards an early integration of NFRs within the requirements engineering (RE). Early experiences with the model indicate its ability to facilitate the process of acquiring the knowledge on the priority and risk of NFRs

    Towards a flexible service integration through separation of business rules

    Get PDF
    Driven by dynamic market demands, enterprises are continuously exploring collaborations with others to add value to their services and seize new market opportunities. Achieving enterprise collaboration is facilitated by Enterprise Application Integration and Business-to-Business approaches that employ architectural paradigms like Service Oriented Architecture and incorporate technological advancements in networking and computing. However, flexibility remains a major challenge related to enterprise collaboration. How can changes in demands and opportunities be reflected in collaboration solutions with minimum time and effort and with maximum reuse of existing applications? This paper proposes an approach towards a more flexible integration of enterprise applications in the context of service mediation. We achieve this by combining goal-based, model-driven and serviceoriented approaches. In particular, we pay special attention to the separation of business rules from the business process of the integration solution. Specifying the requirements as goal models, we separate those parts which are more likely to evolve over time in terms of business rules. These business rules are then made executable by exposing them as Web services and incorporating them into the design of the business process.\ud Thus, should the business rules change, the business process remains unaffected. Finally, this paper also provides an evaluation of the flexibility of our solution in relation to the current work in business process flexibility research

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    Connecting the dots: a multi-pivot approach to data exploration

    No full text
    The purpose of data browsers is to help users identify and query data effectively without being overwhelmed by large complex graphs of data. A proposed solution to identify and query data in graph-based datasets is Pivoting (or set-oriented browsing), a many-to-many graph browsing technique that allows users to navigate the graph by starting from a set of instances followed by navigation through common links. Relying solely on navigation, however, makes it difficult for users to find paths or even see if the element of interest is in the graph when the points of interest may be many vertices apart. Further challenges include finding paths which require combinations of forward and backward links in order to make the necessary connections which further adds to the complexity of pivoting. In order to mitigate the effects of these problems and enhance the strengths of pivoting we present a multi-pivot approach which we embodied in tool called Visor. Visor allows users to explore from multiple points in the graph, helping users connect key points of interest in the graph on the conceptual level, visually occluding the remainder parts of the graph, thus helping create a road-map for navigation. We carried out an user study to demonstrate the viability of our approach

    Towards Adaptable and Adaptive Policy-Free Middleware

    Get PDF
    We believe that to fully support adaptive distributed applications, middleware must itself be adaptable, adaptive and policy-free. In this paper we present a new language-independent adaptable and adaptive policy framework suitable for integration in a wide variety of middleware systems. This framework facilitates the construction of adaptive distributed applications. The framework addresses adaptability through its ability to represent a wide range of specific middleware policies. Adaptiveness is supported by a rich contextual model, through which an application programmer may control precisely how policies should be selected for any particular interaction with the middleware. A contextual pattern mechanism facilitates the succinct expression of both coarse- and fine-grain policy contexts. Policies may be specified and altered dynamically, and may themselves take account of dynamic conditions. The framework contains no hard-wired policies; instead, all policies can be configured.Comment: Submitted to Dependable and Adaptive Distributed Systems Track, ACM SAC 200

    Specifying information dashboards’ interactive features through meta-model instantiation

    Get PDF
    [EN]Information dashboards1 can be leveraged to make informed decisions with the goal of improving policies, processes, and results in different contexts. However, the design process of these tools can be convoluted, given the variety of profiles that can be involved in decision-making processes. The educative context is one of the contexts that can benefit from the use of information dashboards, but given the diversity of actors within this area (teachers, managers, students, researchers, etc.), it is necessary to take into account different factors to deliver useful and effective tools. This work describes an approach to generate information dashboards with interactivity capabilities in different contexts through meta-modeling. Having the possibility of specifying interaction patterns within the generative workflow makes the personalization process more fine-grained, allowing to match very specific requirements from the user. An example of application within the context of Learning Analytics is presented to demonstrate the viability of this approach
    • …
    corecore