16,701 research outputs found

    Specifying message passing systems requires extending temporal logic

    Get PDF

    Enriching OCL Using Observational Mu-Calculus

    Get PDF
    Abstract. The Object Constraint Language is a textual specificatio

    Enforcing nondeterminism via linear time temporal logic specifications

    Get PDF

    Verifying the Interplay of Authorization Policies and Workflow in Service-Oriented Architectures (Full version)

    Full text link
    A widespread design approach in distributed applications based on the service-oriented paradigm, such as web-services, consists of clearly separating the enforcement of authorization policies and the workflow of the applications, so that the interplay between the policy level and the workflow level is abstracted away. While such an approach is attractive because it is quite simple and permits one to reason about crucial properties of the policies under consideration, it does not provide the right level of abstraction to specify and reason about the way the workflow may interfere with the policies, and vice versa. For example, the creation of a certificate as a side effect of a workflow operation may enable a policy rule to fire and grant access to a certain resource; without executing the operation, the policy rule should remain inactive. Similarly, policy queries may be used as guards for workflow transitions. In this paper, we present a two-level formal verification framework to overcome these problems and formally reason about the interplay of authorization policies and workflow in service-oriented architectures. This allows us to define and investigate some verification problems for SO applications and give sufficient conditions for their decidability.Comment: 16 pages, 4 figures, full version of paper at Symposium on Secure Computing (SecureCom09

    An interval logic for higher-level temporal reasoning

    Get PDF
    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included

    Formal methods and tools for the development of distributed and real time systems : Esprit Project 3096 (SPEC)

    Get PDF
    The Basic Research Action No. 3096, Formal Methods snd Tools for the Development of Distributed and Real Time Systems, is funded in the Area of Computer Science, under the ESPRIT Programme of the European Community. The coordinating institution is the Department of Computing Science, Eindhoven University of Technology, and the participating Institutions are the Institute of Computer Science of Crete. the Swedish Institute of Computer Science, the Programmimg Research Group of the University of Oxford, and the Computer Science Departments of the University of Manchester, Imperial College. Weizmann Institute of Science, Eindhoven University of Technology, IMAG Grenoble. Catholic University of Nijmegen, and the University of Liege. This document contains the synopsis. and part of the sections on objectives and area of advance, on baseline and rationale, on research goals, and on organisation of the action, as contained in the original proposal, submitted June, 198S. The section on the state of the art (18 pages) and the full list of references (21 pages) of the original proposal have been deleted because of limitation of available space

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    An LTL Semantics of Business Workflows with Recovery

    Full text link
    We describe a business workflow case study with abnormal behavior management (i.e. recovery) and demonstrate how temporal logics and model checking can provide a methodology to iteratively revise the design and obtain a correct-by construction system. To do so we define a formal semantics by giving a compilation of generic workflow patterns into LTL and we use the bound model checker Zot to prove specific properties and requirements validity. The working assumption is that such a lightweight approach would easily fit into processes that are already in place without the need for a radical change of procedures, tools and people's attitudes. The complexity of formalisms and invasiveness of methods have been demonstrated to be one of the major drawback and obstacle for deployment of formal engineering techniques into mundane projects
    corecore