20,968 research outputs found

    The inheritance of dynamic and deontic integrity constraints or: Does the boss have more rights?

    Get PDF
    In [18,23], we presented a language for the specification of static, dynamic and deontic integrity constraints (IC's) for conceptual models (CM's). An important problem not discussed in that paper is how IC's are inherited in a taxonomic network of types. For example, if students are permitted to perform certain actions under certain preconditions, must we repeat these preconditions when specializing this action for the subtype of graduate students, or are they inherited, and if so, how? For static constraints, this problem is relatively trivial, but for dynamic and deontic constraints, it will turn out that it contains numerous pitfalls, caused by the fact that common sense supplies presuppositions about the structure of IC inheritance that are not warranted by logic. In this paper, we unravel some of these presuppositions and show how to avoid the pitfalls. We first formulate a number of general theorems about the inheritance of necessary and/or sufficient conditions and show that for upward inheritance, a closure assumption is needed. We apply this to dynamic and deontic IC's, where conditions arepreconditions of actions, and show that our common sense is sometimes mistaken about the logical implications of what we have specified. We also show the connection of necessary and sufficient preconditions of actions with the specification of weakest preconditions in programming logic. Finally, we argue that information analysts usually assume constraint completion in the specification of (pre)conditions analogous to predicate completion in Prolog and circumscription in non-monotonic logic. The results are illustrated with numerous examples and compared with other approaches in the literature

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Logic Programming for Describing and Solving Planning Problems

    Full text link
    A logic programming paradigm which expresses solutions to problems as stable models has recently been promoted as a declarative approach to solving various combinatorial and search problems, including planning problems. In this paradigm, all program rules are considered as constraints and solutions are stable models of the rule set. This is a rather radical departure from the standard paradigm of logic programming. In this paper we revisit abductive logic programming and argue that it allows a programming style which is as declarative as programming based on stable models. However, within abductive logic programming, one has two kinds of rules. On the one hand predicate definitions (which may depend on the abducibles) which are nothing else than standard logic programs (with their non-monotonic semantics when containing with negation); on the other hand rules which constrain the models for the abducibles. In this sense abductive logic programming is a smooth extension of the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic Reasoning, special track on Representing Actions and Plannin

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts
    corecore