22,556 research outputs found

    A New Generalized Harmonic Evolution System

    Get PDF
    A new representation of the Einstein evolution equations is presented that is first order, linearly degenerate, and symmetric hyperbolic. This new system uses the generalized harmonic method to specify the coordinates, and exponentially suppresses all small short-wavelength constraint violations. Physical and constraint-preserving boundary conditions are derived for this system, and numerical tests that demonstrate the effectiveness of the constraint suppression properties and the constraint-preserving boundary conditions are presented.Comment: Updated to agree with published versio

    Simulation Models for Analyzing the Dynamic Costs of Process-aware Information Systems

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost estimation has received considerable attention in software engineering for many years, it is difficult to apply existing approaches to PAIS. This difficulty particularly stems from the inability of existing estimation techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS. In response to this problem, this paper proposes an approach which utilizes simulation models for investigating the dynamic costs of PAIS engineering projects. We motivate the need for simulation, discuss the development and execution of simulation models, and give an illustrating example. The present work has been accomplished in the EcoPOST project, which deals with the development of a comprehensive evaluation framework for analyzing PAIS engineering projects from a value-based perspective

    Initial Semantics for Reduction Rules

    Get PDF
    We give an algebraic characterization of the syntax and operational semantics of a class of simply-typed languages, such as the language PCF: we characterize simply-typed syntax with variable binding and equipped with reduction rules via a universal property, namely as the initial object of some category of models. For this purpose, we employ techniques developed in two previous works: in the first work we model syntactic translations between languages over different sets of types as initial morphisms in a category of models. In the second work we characterize untyped syntax with reduction rules as initial object in a category of models. In the present work, we combine the techniques used earlier in order to characterize simply-typed syntax with reduction rules as initial object in a category. The universal property yields an operator which allows to specify translations---that are semantically faithful by construction---between languages over possibly different sets of types. As an example, we upgrade a translation from PCF to the untyped lambda calculus, given in previous work, to account for reduction in the source and target. Specifically, we specify a reduction semantics in the source and target language through suitable rules. By equipping the untyped lambda calculus with the structure of a model of PCF, initiality yields a translation from PCF to the lambda calculus, that is faithful with respect to the reduction semantics specified by the rules. This paper is an extended version of an article published in the proceedings of WoLLIC 2012.Comment: Extended version of arXiv:1206.4547, proves a variant of a result of PhD thesis arXiv:1206.455

    Observation and abstract behaviour in specification and implementation of state-based systems

    Get PDF
    Classical algebraic specification is an accepted framework for specification. A criticism which applies is the fact that it is functional, not based on a notion of state as most software development and implementation languages are. We formalise the idea of a state-based object or abstract machine using algebraic means. In contrast to similar approaches we consider dynamic logic instead of equational logic as the framework for specification and implementation. The advantage is a more expressive language allowing us to specify safety and liveness conditions. It also allows a clearer distinction of functional and state-based parts which require different treatment in order to achieve behavioural abstraction when necessary. We shall in particular focus on abstract behaviour and observation. A behavioural notion of satisfaction for state-elements is needed in order to abstract from irrelevant details of the state realisation

    Possible physical universes

    Get PDF
    The purpose of this paper is to discuss the various types of physical universe which could exist according to modern mathematical physics. The paper begins with an introduction that approaches the question from the viewpoint of ontic structural realism. Section 2 takes the case of the 'multiverse' of spatially homogeneous universes, and analyses the famous Collins-Hawking argument, which purports to show that our own universe is a very special member of this collection. Section 3 considers the multiverse of all solutions to the Einstein field equations, and continues the discussion of whether the notions of special and typical can be defined within such a collection
    corecore