252 research outputs found

    Domain-specific languages

    Get PDF
    Domain-Specific Languages are used in software engineering in order to enhance quality, flexibility, and timely delivery of software systems, by taking advantage of specific properties of a particular application domain. This survey covers terminology, risks and benefits, examples, design methodologies, and implementation techniques of domain-specific languages as used for the construction and maintenance of software systems. Moreover, it covers an annotated selection of 75 key publications in the area of domain-specific languages

    Engineering Automation for Reliable Software Interim Progress Report (10/01/2000 - 09/30/2001)

    Get PDF
    Prepared for: U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211The objective of our effort is to develop a scientific basis for producing reliable software that is also flexible and cost effective for the DoD distributed software domain. This objective addresses the long term goals of increasing the quality of service provided by complex systems while reducing development risks, costs, and time. Our work focuses on "wrap and glue" technology based on a domain specific distributed prototype model. The key to making the proposed approach reliable, flexible, and cost-effective is the automatic generation of glue and wrappers based on a designer's specification. The "wrap and glue" approach allows system designers to concentrate on the difficult interoperability problems and defines solutions in terms of deeper and more difficult interoperability issues, while freeing designers from implementation details. Specific research areas for the proposed effort include technology enabling rapid prototyping, inference for design checking, automatic program generation, distributed real-time scheduling, wrapper and glue technology, and reliability assessment and improvement. The proposed technology will be integrated with past research results to enable a quantum leap forward in the state of the art for rapid prototyping.U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-22110473-MA-SPApproved for public release; distribution is unlimited

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    System engineering and evolution decision support, Final Progress Report (05/01/1998 - 09-30-2001)

    Get PDF
    The objective of our effort is to develop a scientific basis for system engineering automation and decision support. This objective addresses the long term goals of increasing the quality of service provided complex systems while reducing development risks, costs, and time. Our work focused on decision support for designing operations of complex modular systems that can include embedded software. Emphasis areas included engineering automation capabilities in the areas of design modifications, design records, reuse, and automatic generation of design representations such as real-time schedules and software.U.S. Army Research OfficeFunding number(s): DSAM 90387, DWAM 80013, DWAM 90215

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Domain-specific languages for modeling and simulation

    Get PDF
    Simulation models and simulation experiments are increasingly complex. One way to handle this complexity is developing software languages tailored to specific application domains, so-called domain-specific languages (DSLs). This thesis explores the potential of employing DSLs in modeling and simulation. We study different DSL design and implementation techniques and illustrate their benefits for expressing simulation models as well as simulation experiments with several examples.Simulationsmodelle und -experimente werden immer komplexer. Eine Möglichkeit, dieser Komplexität zu begegnen, ist, auf bestimmte Anwendungsgebiete spezialisierte Softwaresprachen, sogenannte domänenspezifische Sprachen (\emph{DSLs, domain-specific languages}), zu entwickeln. Die vorliegende Arbeit untersucht, wie DSLs in der Modellierung und Simulation eingesetzt werden können. Wir betrachten verschiedene Techniken für Entwicklung und Implementierung von DSLs und illustrieren ihren Nutzen für das Ausdrücken von Simulationsmodellen und -experimenten anhand einiger Beispiele

    The design and implementation of the VRPML support environment.

    Get PDF
    Proses pembangunan penslan berkait rapat dengan turutan langkah yang mesti dilakukan oleh jurutera perisian untuk memenuhi matlamat kejuruteraan perisian. Untuk menghasilkan proses yang tepat dan lengkap, proses pembangunan perisian boleh dimodel dan dilari menggunakan bahasa pennodelan (PML) dengan dibantu oleh sistem proses bantuan (PSEE). Software processes relate to the sequences of steps that must be performed by software engineers in order to pursue the goals of software engineering. In order to have an accurate representation and implementation of what the actual steps are, software processes may be modeled and enacted by a process modeling language (PML) and its process support system (called the Process Centered Environments i.e. PSEE)
    corecore