15,837 research outputs found

    An Enactive-Ecological Approach to Information and Uncertainty

    Get PDF
    Information is a central notion for cognitive sciences and neurosciences, but there is no agreement on what it means for a cognitive system to acquire information about its surroundings. In this paper, we approximate three influential views on information: the one at play in ecological psychology, which is sometimes called information for action; the notion of information as covariance as developed by some enactivists, and the idea of information as minimization of uncertainty as presented by Shannon. Our main thesis is that information for action can be construed as covariant information, and that learning to perceive covariant information is a matter of minimizing uncertainty through skilled performance. We argue that the agent’s cognitive system conveys information for acting in an environment by minimizing uncertainty about how to achieve her intended goals in that environment. We conclude by reviewing empirical findings that support our view and by showing how direct learning, seen as instance of ecological rationality at work, is how mere possibilities for action are turned into embodied know-how. Finally, we indicate the affinity between direct learning and sense-making activity

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    The DAB model of drawing processes

    Get PDF
    The problem of automatic drawing was investigated in two ways. First, a DAB model of drawing processes was introduced. DAB stands for three types of knowledge hypothesized to support drawing abilities, namely, Drawing Knowledge, Assimilated Knowledge, and Base Knowledge. Speculation concerning the content and character of each of these subsystems of the drawing process is introduced and the overall adequacy of the model is evaluated. Second, eight experts were each asked to understand six engineering drawings and to think aloud while doing so. It is anticipated that a concurrent protocol analysis of these interviews can be carried out in the future. Meanwhile, a general description of the videotape database is provided. In conclusion, the DAB model was praised as a worthwhile first step toward solution of a difficult problem, but was considered by and large inadequate to the challenge of automatic drawing. Suggestions for improvements on the model were made

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    Investigation of Air Transportation Technology at Princeton University, 1989-1990

    Get PDF
    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given

    Kinematic functions for redundancy resolution using configuration control

    Get PDF
    The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements
    • …
    corecore