255,600 research outputs found

    Monitoring-Oriented Programming: A Tool-Supported Methodology for Higher Quality Object-Oriented Software

    Get PDF
    This paper presents a tool-supported methodological paradigm for object-oriented software development, called monitoring-oriented programming and abbreviated MOP, in which runtime monitoring is a basic software design principle. The general idea underlying MOP is that software developers insert specifications in their code via annotations. Actual monitoring code is automatically synthesized from these annotations before compilation and integrated at appropriate places in the program, according to user-defined configuration attributes. This way, the specification is checked at runtime against the implementation. Moreover, violations and/or validations of specifications can trigger user-defined code at any points in the program, in particular recovery code, outputting or sending messages, or raising exceptions. The MOP paradigm does not promote or enforce any specific formalism to specify requirements: it allows the users to plug-in their favorite or domain-specific specification formalisms via logic plug-in modules. There are two major technical challenges that MOP supporting tools unavoidably face: monitor synthesis and monitor integration. The former is heavily dependent on the specification formalism and comes as part of the corresponding logic plug-in, while the latter is uniform for all specification formalisms and depends only on the target programming language. An experimental prototype tool, called Java-MOP, is also discussed, which currently supports most but not all of the desired MOP features. MOP aims at reducing the gap between formal specification and implementation, by integrating the two and allowing them together to form a system

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Evaluation of standard monitoring tools(including log analysis) for control systems at Cern

    Get PDF
    Project Specification: The goal of this Openlab Summer Student project was to assess the implications and the benefits of integrating two standard IT tools, namely Icinga and Splunkstorm with the existing production setup for monitoring and management of control systems at CERN. Icinga – an open source monitoring software based on Nagios would need to be integrated with an in-house developed WinCC OA application called MOON, that is currently used for monitoring and managing all the components that make up the control systems. Splunkstorm – a data analysis and log management online application would be used stand alone, so it didn’t need integration with other software, only understanding of features and installation procedure. Abstract: The aim of this document is to provide insights into installation procedures, key features and functionality and projected implementation effort of Icinga and Splunkstorm IT tools. Focus will be on presenting the most feasible implementation paths that surfaced once both software were well understood

    Developing a Framework to Implement Public Key Infrastructure Enabled Security in XML Documents

    No full text
    This paper concentrates on proposing a framework to implement the PKI enables security in XML documents, by defining a common framework and processing rules that can be shared across applications using common tools, avoiding the need for extensive customization of applications to add security. The Framework reuses the concepts, algorithms and core technologies of legacy security systems while introducing changes necessary to support extensible integration with XML. This allows interoperability with a wide range of existing infrastructures and across deployments. Currently no strict security models and mechanisms are available that can provide specification and enforcement of security policies for XML documents. Such models are crucial in order to facilitate a secure dissemination of XML documents, containing information of different sensitivity levels, among (possibly large) user communities

    An integrated formal methods tool-chain and its application to verifying a file system model

    Get PDF
    Tool interoperability as a mean to achieve integration is among the main goals of the international Grand Challenge initiative. In the context of the Verifiable file system mini-challenge put forward by Rajeev Joshi and Gerard Holzmann, this paper focuses on the integration of different formal methods and tools in modelling and verifying an abstract file system inspired by the Intel (R) Flash File System Core. We combine high-level manual specification and proofs with current state of the art mechanical verification tools into a tool-chain which involves Alloy, VDM++ and HOL. The use of (pointfree) relation modelling provides the glue which binds these tools together.Mondrian Project funded by the Portuguese NSF under contract PTDC/EIA-CCO/108302/200

    Enhancing System Realisation in Formal Model Development

    Get PDF
    Software for mission-critical systems is sometimes analysed using formal specification to increase the chances of the system behaving as intended. When sufficient insights into the system have been obtained from the formal analysis, the formal specification is realised in the form of a software implementation. One way to realise the system's software is by automatically generating it from the formal specification -- a technique referred to as code generation. However, in general it is difficult to make guarantees about the correctness of the generated code -- especially while requiring automation of the steps involved in realising the formal specification. This PhD dissertation investigates ways to improve the automation of the steps involved in realising and validating a system based on a formal specification. The approach aims to develop properly designed software tools which support the integration of formal methods tools into the software development life cycle, and which leverage the formal specification in the subsequent validation of the system. The tools developed use a new code generation infrastructure that has been built as part of this PhD project and implemented in the Overture tool -- a formal methods tool that supports the Vienna Development Method. The development of the code generation infrastructure has involved the re-design of the software architecture of Overture. The new architecture brings forth the reuse and extensibility features of Overture to take into account the needs and requirements of software extensions targeting Overture. The tools developed in this PhD project have successfully supported three case studies from externally funded projects. The feedback received from the case study work has further helped improve the code generation infrastructure and the tools built using it

    Specification management for the cost constraint optimisation in microelectronic design

    Get PDF
    International audienceIn the preliminary design phase the integration of the economic constraints of a product is a difficult engineering task since there is a real lack of dedicated tools. This paper illustrates a specification software solution method making it possible to meet this need, applied to the microelectronics field

    Nondeterminism in algebraic specifications and algebraic programs

    Get PDF
    "Nondeterminism in Algebraic Specifications and Algebraic Programs" presents a mathematical theory for the integration of three concepts: non-determinism, axiomatic specification and term rewriting. For non-deterministic programs, an algebraic specification language is provided which admits the application of automated tools based on term rewriting techniques. This general framework is used to explore connections between logic programming and algebraic programming. Examples from various areas of computer science are given, including results of computer experiments with a prototypical implementation. This book should be of interest to readers working within several fields of theoretical computer science, from algebraic specification theory to formal descriptions of distributed systems
    corecore