1,971 research outputs found

    Persim - Simulator for Human Activities in Pervasive Spaces

    Get PDF
    Activity recognition research relies heavily on test data to verify the modeling technique and the performance of the activity recognition algorithm. But data from real deployments are expensive and time consuming to obtain. And even if cost is not an issue, regulatory limitations on the use of human subjects prohibit the collection of extensive datasets that can test all scenarios, under all circumstances. A powerful and verifiable simulation tool is needed to accelerate research on human activity recognition. We present Persim, an event driven simulator of human activities in pervasive spaces. Persim is capable of capturing elements of space, sensors, behaviors (activities), and their inter-relationships. We focus on presenting the five main use cases for Persim addressing dataset synthesis, reuse and extension of existing datasets, sharing of data and simulation projects, as well as data validation. © 2011 IEEE

    Activity, context, and plan recognition with computational causal behavior models

    Get PDF
    Objective of this thesis is to answer the question "how to achieve efficient sensor-based reconstruction of causal structures of human behaviour in order to provide assistance?". To answer this question, the concept of Computational Causal Behaviour Models (CCBMs) is introduced. CCBM allows the specification of human behaviour by means of preconditions and effects and employs Bayesian filtering techniques to reconstruct action sequences from noisy and ambiguous sensor data. Furthermore, a novel approximative inference algorithm – the Marginal Filter – is introduced

    Multi-task Self-Supervised Learning for Human Activity Detection

    Full text link
    Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.Max Planck GesellschaftNational Science FoundationBBSRRoyal Societ

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans l’espace et dans le temps. L’être humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des décisions. Ces configurations de situations peuvent aussi être appelées « situations d’intérêt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systèmes d’acquisition de données souvent présents dans diverses industries grâce aux récents développements technologiques et qui génèrent des bases de données de plus en plus volumineuses. On relève un problème important dans la littérature lié au fait que les formalismes de représentation utilisés sont souvent incapables de représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive (modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en œuvre de tels modèles par des agents logiciels. Dans cette thèse, nous proposons un nouveau modèle de représentation des situations d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. Le modèle se base sur les notions d’événement et d’état pour représenter des phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons détectés. Nous proposons aussi un outil de génération automatisée des relations qualitatives de proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre modèle dans des applications industrielles réelles. Ainsi, les contributions principales de notre travail sont : Un formalisme de représentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la définition des patrons spatio-temporels basée sur l’intégration de l’information contextuelle. ; Un outil de génération automatique des relations spatiales qualitatives de proximité basé sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de détection des patrons spatiotemporels basée sur l’extension d’un moteur de traitement des événements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine

    Intelligent Systems

    Get PDF
    This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In addition to that, effective acquiring information, knowledge management and improved knowledge transfer in any media, as well as modeling its information content using meta-and hyper heuristics and semantic reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in education and generating the intelligent distributed eLearning architecture, as well as in a large number of technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture, cartography, electric power distribution systems, intelligent building management systems, drilling operations etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic and human support in the healthcare environment have also been made easier
    • …
    corecore