15,265 research outputs found

    Adapting e-learning and learning services for people with disabilities

    Get PDF
    Providing learning materials and support services that are adapted to the needs of individuals has the potential to enable learners to obtain maximal benefit from university level studies. This paper describes EU4ALL project which has been exploring how to present customized learning materials and services for people with disabilities. A number of the technical components of the EU4ALL framework are described. This is followed with a brief description of prototype implementations. This is then followed by a discussion of a number of research directions that may enhance the adaptability, usability and accessibility of information and support systems can be used and consumed by a diverse user population

    PuLSE-I: Deriving instances from a product line infrastructure

    Get PDF
    Reusing assets during application engineering promises to improve the efficiency of systems development. However, in order to benefit from reusable assets, application engineering processes must incorporate when and how to use the reusable assets during single system development. However, when and how to use a reusable asset depends on what types of reusable assets have been created.Product line engineering approaches produce a reusable infrastructure for a set of products. In this paper, we present the application engineering process associated with the PuLSE product line software engineering method - PuLSE-I. PuLSE-I details how single systems can be built efficiently from the reusable product line infrastructure built during the other PuLSE activities

    Decentralized Control and Adaptation in Distributed Applications via Web and Semantic Web Technologies

    Get PDF
    The presented work provides an approach and an implementation for enabling decentralized control in distributed applications composed of heterogeneous components by benefiting from the interoperability provided by the Web stack and relying on semantic technologies for enabling data integration. In particular, the concept of Smart Components enables adaptability at runtime through an adaptation layer and is complemented by a reference architecture as well as a prototypical implementation

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Towards a re-engineering method for web services architectures

    Get PDF
    Recent developments in Web technologies – in particular through the Web services framework – have greatly enhanced the flexible and interoperable implementation of service-oriented software architectures. Many older Web-based and other distributed software systems will be re-engineered to a Web services-oriented platform. Using an advanced e-learning system as our case study, we investigate central aspects of a re-engineering approach for the Web services platform. Since our aim is to provide components of the legacy system also as services in the new platform, re-engineering to suit the new development paradigm is as important as re-engineering to suit the new architectural requirements

    Dynamic composition and adaptation in adapt-medium

    Get PDF
    International audienceIn the presence of operational context changes, many applications must use dynamic adaptations in order to meet requirements. When an application has a set of distributed objects that collaborates to offer a particular function, adaptations involving simultaneous distributed processes may affect such collaborations, planning distributed adaptations is thus a complex task for developers. This paper presents Adapt-Medium, an architecture of adaptive distributed components. In the architecture, adaptations are realized by performing dynamic compositions of distributed components. We introduce a model-based process for 1) specifying architecture variants of such distributed components and 2) automatically generating adaptation plans that are performed at runtime to switch between architecture variants
    • 

    corecore