3,969 research outputs found

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright Š 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A development framework for artificial intelligence based distributed operations support systems

    Get PDF
    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself

    Modelling and Analysis Using GROOVE

    Get PDF
    In this paper we present case studies that describe how the graph transformation tool GROOVE has been used to model problems from a wide variety of domains. These case studies highlight the wide applicability of GROOVE in particular, and of graph transformation in general. They also give concrete templates for using GROOVE in practice. Furthermore, we use the case studies to analyse the main strong and weak points of GROOVE

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Network Security Automation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    API diversity for microservices in the domain of connected vehicles

    Get PDF
    Web services in the domain of connected vehicles are subject to various requirements including high availability and large workloads. Microservices are an architectural style which can fulfill those requirements by fostering the independence and decoupling of software components as reusable services. To achieve this independence, microservices have to implement all aspects of providing the services themselves, including different API technologies for heterogeneous consumers and supporting features like authentication. In this work, we examine the use of a service proxy that externalizes these concerns into a sidecar that provides multiple APIs and common service functionality in a platform-independent manner. We look at how different kinds of API styles and technologies solve selected classes of problems and how we can translate between API technologies. We design and implement a framework for building gateways that enables the creation and composition of reusable components, in the fashion of Lego bricks, to maximize flexibility, while reducing the effort for building gateway components. We design and implement selected components of common and reusable API functionality enabling us to build a reference setup with a service proxy as a sidecar using our framework. Finally, we evaluate the proposed solution to identify benefits and drawbacks of the approach of using our framework as a service proxy. We conclude that the examined approach provides benefits for the development of many polyglot microservices, but splitting one service into two components adds additional complexity that has to be managed.Web Services für vernetzte Fahrzeuge unterliegen unterschiedlichen Anforderungen, unter anderem einer hohen Verfügbarkeit und einem großen Datendurchsatz. Microservices sind ein Architekturstil, der diesen Anforderungen gerecht werden kann, indem er die Unabhängigkeit und Entkopplung von Softwarekomponenten als wiederverwendbare Services fördert. Zum Erreichen der Unabhängigkeit implementieren Microservices alle Aspekte der Servicebereitstellung eigenständig. Dazu gehört verschiedene API Technologien für heterogene Clients bereitzustellen und unterstützende Funktionalität wie Authentifizierung zu implementieren. In dieser Arbeit wird die Verwendung einer Proxy Komponente vor einem Service untersucht, durch welche die Bereitstellung verschiedener API Technologien und allgemeiner unterstützender Funktionalität aus dem Service extrahiert wird. Die Lösungen verschiedener API Technologien und Stile für ausgewählte Klassen an Problemen werden verglichen und mögliche Umwandlungen der verschiedenen API Technologien werden untersucht. Es wird ein Framework konzeptioniert und implementiert, das die Erstellung von Gateways durch Kombination von wiederverwendbaren Komponenten, wie das Zusammensetzen von Legosteinen, ermöglicht. Dieses Framework sorgt für eine hohe Flexibilität, während es den Aufwand bei der Erstellung von Gateways gering hält. Es werden ausgewählte wiederverwendbare Komponenten entworfen, um eine Referenzimplementierung des Ansatzes umzusetzen, bei der allgemeine Funktionalität in einen parallel laufenden Proxy ausgelagert wird. Dieser Ansatz wird evaluiert, indem Vor- und Nachteile anhand eines mit dem Framework erstellten Proxys identifiziert werden. Das Fazit dieser Arbeit ist, dass dieser Ansatz bei Systemen mit vielen Microservices mit unterschiedlichen Programmiersprachen Vorteile bringt, aber die Trennung eines Services in zwei Komponenten eine nicht unerhebliche Komplexität einführt
    • …
    corecore