17,907 research outputs found

    Flow Logic

    Full text link
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or ≥γ\geq \gamma, for γ∈N\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Model Checking Linear Logic Specifications

    Full text link
    The overall goal of this paper is to investigate the theoretical foundations of algorithmic verification techniques for first order linear logic specifications. The fragment of linear logic we consider in this paper is based on the linear logic programming language called LO enriched with universally quantified goal formulas. Although LO was originally introduced as a theoretical foundation for extensions of logic programming languages, it can also be viewed as a very general language to specify a wide range of infinite-state concurrent systems. Our approach is based on the relation between backward reachability and provability highlighted in our previous work on propositional LO programs. Following this line of research, we define here a general framework for the bottom-up evaluation of first order linear logic specifications. The evaluation procedure is based on an effective fixpoint operator working on a symbolic representation of infinite collections of first order linear logic formulas. The theory of well quasi-orderings can be used to provide sufficient conditions for the termination of the evaluation of non trivial fragments of first order linear logic.Comment: 53 pages, 12 figures "Under consideration for publication in Theory and Practice of Logic Programming

    Security Policy Consistency

    Full text link
    With the advent of wide security platforms able to express simultaneously all the policies comprising an organization's global security policy, the problem of inconsistencies within security policies become harder and more relevant. We have defined a tool based on the CHR language which is able to detect several types of inconsistencies within and between security policies and other specifications, namely workflow specifications. Although the problem of security conflicts has been addressed by several authors, to our knowledge none has addressed the general problem of security inconsistencies, on its several definitions and target specifications.Comment: To appear in the first CL2000 workshop on Rule-Based Constraint Reasoning and Programmin

    MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications

    Get PDF
    We introduce MCMAS-SLK, a BDD-based model checker for the verification of systems against specifications expressed in a novel, epistemic variant of strategy logic. We give syntax and semantics of the specification language and introduce a labelling algorithm for epistemic and strategy logic modalities. We provide details of the checker which can also be used for synthesising agents' strategies so that a specification is satisfied by the system. We evaluate the efficiency of the implementation by discussing the results obtained for the dining cryptographers protocol and a variant of the cake-cutting problem

    Formal Verification of Real-Time Function Blocks Using PVS

    Full text link
    A critical step towards certifying safety-critical systems is to check their conformance to hard real-time requirements. A promising way to achieve this is by building the systems from pre-verified components and verifying their correctness in a compositional manner. We previously reported a formal approach to verifying function blocks (FBs) using tabular expressions and the PVS proof assistant. By applying our approach to the IEC 61131-3 standard of Programmable Logic Controllers (PLCs), we constructed a repository of precise specification and reusable (proven) theorems of feasibility and correctness for FBs. However, we previously did not apply our approach to verify FBs against timing requirements, since IEC 61131-3 does not define composite FBs built from timers. In this paper, based on our experience in the nuclear domain, we conduct two realistic case studies, consisting of the software requirements and the proposed FB implementations for two subsystems of an industrial control system. The implementations are built from IEC 61131-3 FBs, including the on-delay timer. We find issues during the verification process and suggest solutions.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    MetTeL: A Generic Tableau Prover.

    Get PDF
    • …
    corecore