1,734 research outputs found

    Hierarchical gate-level verification of speed-independent circuits

    Get PDF
    This paper presents a method for the verification of speed-independent circuits. The main contribution is the reduction of the circuit to a set of complex gates that makes the verification time complexity depend only on the number of state signals (C elements, RS flip-flops) of the circuit. Despite the reduction to complex gates, verification is kept exact. The specification of the environment only requires to describe the transitions of the input/output signals of the circuit and is allowed to express choice and non-determinism. Experimental results obtained from circuits with more than 500 gates show that the computational cost can be drastically reduced when using hierarchical verification.Peer ReviewedPostprint (published version

    A new look at the conditions for the synthesis of speed-independent circuits

    Get PDF
    This paper presents a set of sufficient conditions for the gate-level synthesis of speed-independent circuits when constrained to a given class of gate library. Existing synthesis methodologies are restricted to architectures that use simple AND-gates, and do not exploit the advantages offered by the existence of complex gates. The use of complex gates increases the speed and reduces the area of the circuits. These improvements are achieved because of (1) the elimination of the distributivity, signal persistency and unique minimal state requirements imposed by other techniques; (2) the reduction in the number of internal signals necessary to guarantee the synthesis; and finally (3) the utilization of optimization techniques to reduce the fan-in of the involved gates and the number of required memory elements.Peer ReviewedPostprint (published version

    Relative timing

    Get PDF
    Journal ArticleAbstract-Relative timing (RT) is introduced as a method for asynchronous design. Timing requirements of a circuit are made explicit using relative timing. Timing can be directly added, removed, and optimized using this style. RT synthesis and verification are demonstrated on three example circuits, facilitating transformations from speed-independent circuits to burst-mode and pulse-mode circuits. Relative timing enables improved performance, area, power, and functional testability of up to a factor of 3x in all three cases. This method is the foundation of optimized timed circuit designs used in an industrial test chip, and may be formalized and automated

    Covering conditions and algorithms for the synthesis of speed-independent circuits

    Get PDF
    Journal ArticleAbstract-This paper presents theory and algorithms for the synthesis of standard C-implementations of speed-independent circuits. These implementations are block-level circuits which may consist of atomic gates to perform complex functions in order to ensure hazard freedom. First, we present Boolean covering conditions that guarantee that the standard C-implementations operate correctly. Then, we present two algorithms that produce optimal solutions to the covering problem. The first algorithm is always applicable, but does not complete on large circuits. The second algorithm, motivated by our observation that our covering problem can often be solved with a single cube, finds the optimal single-cube solution when such a solution exists. When applicable, the second algorithm is dramatically more efficient than the first, more general algorithm. We present results for benchmark specifications which indicate that our single-cube algorithm is applicable on most benchmark circuits and reduces run times by over an order of magnitude. The block-level circuits generated by our algorithms are a good starting point for tools that perform technology mapping to obtain gate-level speed independent circuits

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Efficient verification of hazard-freedom in gate-level timed asynchronous circuits

    Get PDF
    Journal ArticleAbstract-This paper presents an efficient method for verifying hazard-freedom in gate-level timed asynchronous circuits. Timed circuits are a class of asynchronous circuits that are optimized using explicit timing information. In asynchronous circuits, correct operation requires that there are no hazards in the circuit implementation. Therefore, when designing an asynchronous circuit, each internal node and output of the circuit must be verified for hazard-freedom to ensure correct operation. Current verification algorithms for timed circuits require an explicit state exploration that often results in state explosion for even modest-sized examples. The goal of this paper is to abstract the behavior of internal nodes and utilize this information to make a conservative determination of hazard-freedom for each node in the circuit. Experimental results indicate that this approach is substantially more efficient than existing timing verification tools. These results also indicate that this method scales well for large examples that could not be previously analyzed, in that it is capable of analyzing these circuits in less than a second. While this method is conservative in that some false hazards may be reported, our results indicate that their number is small

    Automatic synthesis of fast compact self-timed control circuits

    Get PDF
    Journal ArticleWe present a tool called MEAT which has been designed to automatically synthesize transistor level. CMOS, self-timed control circuits. MEAT has been used to specify and synthesize self-timed circuits for a fully self-timed 300,000 transistor communication coprocessor. The design is specified using finite state machines which permit burst-mode inputs. Burst-mode is a limited form of MIC (multiple input change) signalling. The primary goal of MEAT is to produce fast and compact circuits. In order to achieve this goal, MEAT implementations permit timing assumption which can by verifiably supported at the physical implementation level, and result in significant improvements in speed and area of the design. Since MEAT has been used for large designs, we have also been forced to make the algorithms efficient. The result is a tool which is efficient, easy to use by today's hardware designers since the specification is based on the commonly used finite state machine control model, and synthesize CMOS transistor implementations that are self-timed, fast and compact. The paper presents a description of the tool, the nature of the algorithms used, and examples of its use

    The post office experience: designing a large asynchronous chip

    Get PDF
    Journal ArticleThe Post Office is an asynchronous, 300,000 transistor, full-custom CMOS chip designed as the communication component for the Mayfly scalable parallel processor. Performance requirements led to the development of a design style which permits the design of sequential circuits operating under a restricted form of multiple input change sign alling called burst-mode. The Post Office complexity forced us to develop a set of design fools capable of correctly synthesizing transistor circuits front state machine and equation specifications, and capable of verifying the correctness of the resultant circuity using implementation specific timing assumptions. The paper provides a case study of this design experience

    Lazy transition systems and asynchronous circuit synthesis with relative timing assumptions

    Get PDF
    Journal ArticleThis paper presents a design flow for timed asynchronous circuits. It introduces lazy transitions systems as a new computational model to represent the timing information required for synthesis. The notion of laziness explicitly distinguishes between the enabling and the firing of an event in a transition system. Lazy transition systems can be effectively used to model the behavior of asynchronous circuits in which relative timing assumptions can be made on the occurrence of events. These assumptions can be derived from the information known a priori about the delay of the environment and the timing characteristics of the gates that will implement the circuit. The paper presents necessary conditions to generate circuits and a synthesis algorithm that exploits the timing assumptions for optimization. It also proposes a method for back-annotation that derives a set of sufficient timing constraints that guarantee the correctness of the circuit

    Verification and synthesis of asynchronous control circuits using petri net unfoldings

    Get PDF
    PhD ThesisDesign of asynchronous control circuits has traditionally been associated with application of formal methods. Event-based models, such as Petri nets, provide a compact and easy to understand way of specifying asynchronous behaviour. However, analysis of their behavioural properties is often hindered by the problem of exponential growth of reachable state space. This work proposes a new method for analysis of asynchronous circuit models based on Petri nets. The new approach is called PN-unfolding segment. It extends and improves existing Petri nets unfolding approaches. In addition, this thesis proposes a new analysis technique for Signal Transition Graphs along with an efficient verification technique which is also based on the Petri net unfolding. The former is called Full State Graph, the latter - STG-unfolding segment. The boolean logic synthesis is an integral part of the asynchronous circuit design process. In many cases, even if the verification of an asynchronous circuit specification has been performed successfully, it is impossible to obtain its implementation using existing methods because they are based on the reachability analysis. A new approach is proposed here for automated synthesis of speed-independent circuits based on the STG-unfolding segment constructed during the verification of the circuit's specification. Finally, this work presents experimental results showing the need for the new Petri net unfolding techniques and confirming the advantages of application of partial order approach to analysis, verification and synthesis of asynchronous circuits.The Research Committee, Newcastle University: Overseas Research Studentship Award
    • …
    corecore