196 research outputs found

    verifying a behavioural logic for graph transformation systems

    Get PDF
    We propose a framework for the verication of behavioural properties of systems modelled as graph transformation systems. The properties can be expressed in a temporal logic which is basically a -calculus where the state predicates are formulae of a monadic second order logic, describing graph properties. The verication technique relies on an algorithm for the construction of nite over-approximations of the unfolding of a graph transformation system

    Automated equivalence checking of concurrent quantum systems

    Get PDF
    The novel field of quantum computation and quantum information has gathered significant momentum in the last few years. It has the potential to radically impact the future of information technology and in influence the development of modern society. The construction of practical, general purpose quantum computers has been challenging, but quantum cryptographic and communication devices have been available in the commercial marketplace for several years. Quantum networks have been built in various cities around the world and a dedicated satellite has been launched by China to provide secure quantum communication. Such new technologies demand rigorous analysis and verification before they can be trusted in safety- and security- critical applications. Experience with classical hardware and software systems has shown the difficulty of achieving robust and reliable implementations. We present CCSq, a concurrent language for describing quantum systems, and develop verification techniques for checking equivalence between CCSq processes. CCSq has well-defined operational and superoperator semantics for protocols that are functional, in the sense of computing a deterministic input-output relation for all interleavings arising from concurrency in the system. We have implemented QEC (Quantum Equivalence Checker), a tool which takes the specification and implementation of quantum protocols, described in CCSq, and automatically checks their equivalence. For efficiency purposes, we restrict ourselves to Clifford operators in the stabilizer formalism, but we are able to verify protocols over all input states. We have specified and verified a collection of interesting and practical quantum protocols ranging from quantum communication and quantum cryptography to quantum error correction

    Design, Formal Modeling, and Validation of Cloud Storage Systems using Maude

    Get PDF
    To deal with large amounts of data while offering high availability, throughput and low latency, cloud computing systems rely on distributed, partitioned, and replicated data stores. Such cloud storage systems are complex software artifacts that are very hard to design and analyze. We argue that formal specification and model checking analysis should significantly improve their design and validation. In particular, we propose rewriting logic and its accompanying Maude tools as a suitable framework for formally specifying and analyzing both the correctness and the performance of cloud storage systems. This chapter largely focuses on how we have used rewriting logic to model and analyze industrial cloud storage systems such as Google's Megastore, Apache Cassandra, Apache ZooKeeper, and RAMP. We also touch on the use of formal methods at Amazon Web Services.This work is based on research sponsored by the Air Force Research Laboratory and the Air Force Office of Scientific Research, under agreement number FA8750-11-2-0084. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. This work is also based on research supported by the National Science Foundation under Grant Nos. NSF CNS 1409416 and NSF CNS 1319527.Ope

    A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic

    Get PDF
    International audienceComponent Based Software Engineering has now emerged as a discipline for system development. After years of battle between component platforms, the need for means to abstract away from specific implementation details is now recognized. This paves the way for model driven approaches (such as MDE) but also for the more older Architectural Description Language (ADL) paradigm. In this paper we present KADL, an ADL based on the Korrigan formal language which supports the following features: integration of fully formal behaviours and data types, expressive component composition mechanisms through the use of modal logic, specification readability through graphical notations, and dedicated architectural analysis techniques. Key Words: Architectural Description Language, Component Based Software Engineering, Mixed Formal Specifications, Symbolic Transition Systems, Abstract Data Types, Modal Logic Glue, Graphical Notations, Verification

    Extending the Finite Domain Solver of GNU Prolog

    No full text
    International audienceThis paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to overcome its current limitations. The preliminary performance evaluation shows a limited slowdown factor with respect to the initial solver. This factor is widely counterbalanced by the new possibilities and the robustness of the solver. Furthermore these results are preliminary and we propose some directions to limit this overhead

    Design, verification and automatic implementation of correct-by-construction distributed transaction systems in Maude

    Get PDF
    Designing, verifying, and implementing highly reliable distributed systems is at present a hard and very labor-intensive task. Cloud-based systems have further increased this complexity due to the desired consistency, availability, scalability, and disaster tolerance. This dissertation addresses this challenge in the context of distributed transaction systems (DTSs) from two complementary perspectives: (i) designing DTSs with high assurance such that they satisfy desired correctness and performance requirements; and (ii) transforming verified system designs into correct-by-construction distributed implementations. Regarding correctness requirements, we provide an object-based framework for formally modeling DTSs in Maude, explain how such models can be automatically instrumented to record relevant events during a run, formally define a wide range of consistency properties on such histories of events, and implement a tool which fully automates the entire specification instrumentation and model checking process. Regarding performance requirements, we propose a general, though not yet automated, method that transforms the untimed, non-probabilistic, and nondeterministic formal Maude models of DTSs into probabilistic rewrite theories, explain how we can monitor the system executions of such probabilistic theories, and shows how we can evaluate the performance of the DTS designs based on the recorded log for different performance parameters and workloads by statistical model checking. To bridge the formality gap between verified designs and distributed implementations we present a correct-by-construction automatic transformation mapping a verified formal specification of an actor-based distributed system design in Maude to a distributed implementation enjoying the same safety and liveness properties as the original formal design. Two case studies, applying this automatic transformation to state-of-the-art DTSs analyzed within the same formal framework for both logical and performance properties, show that high-quality implementations with acceptable performance and meeting performance predictions can be automatically generated in this way

    Programmiersprachen und Rechenkonzepte

    Get PDF
    Seit 1984 veranstaltet die GI--Fachgruppe "Programmiersprachen und Rechenkonzepte" regelmäßig im Frühjahr einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kontakte
    • …
    corecore