1,426 research outputs found

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Atomic components

    Get PDF
    There has been much interest in components that combine the best of state-based and event-based approaches. The interface of a component can be thought of as its specification and substituting components with the same interface cannot be observed by any user of the components. Here we will define the semantics of atomic components where both states and event can be part of the interface. The resulting semantics is very similar to that of (event only) processes. But it has two main novelties: one, it does not need recursion or unique fixed points to model nontermination; and two, the behaviour of divergence is modelled by abstraction, i.e. the construction of the observational semantics

    Java in the Safety-Critical Domain

    Get PDF

    A VISUAL DESIGN METHOD AND ITS APPLICATION TO HIGH RELIABILITY HYPERMEDIA SYSTEMS

    Get PDF
    This work addresses the problem of the production of hypermedia documentation for applications that require high reliability, particularly technical documentation in safety critical industries. One requirement of this application area is for the availability of a task-based organisation, which can guide and monitor such activities as maintenance and repair. In safety critical applications there must be some guarantee that such sequences are correctly presented. Conventional structuring and design methods for hypermedia systems do not allow such guarantees to be made. A formal design method that is based on a process algebra is proposed as a solution to this problem. Design methods of this kind need to be accessible to information designers. This is achieved by use of a technique already familiar to them: the storyboard. By development of a storyboard notation that is syntactically equivalent to a process algebra a bridge is made between information design and computer science, allowing formal analysis and refinement of the specification drafted by information designers. Process algebras produce imperative structures that do not map easily into the declarative formats used for some hypermedia systems, but can be translated into concurrent programs. This translation process, into a language developed by the author, called ClassiC, is illustrated and the properties that make ClassiC a suitable implementation target discussed. Other possible implementation targets are evaluated, and a comparative illustration given of translation into another likely target, Java
    corecore