160 research outputs found

    Systems biology and systems genetics—novel innovative approaches to study host–pathogen interactions during influenza infection

    Get PDF
    Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host–pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead

    Design and validation of novel cross-reactive influenza B vaccines

    Get PDF

    Respiratory Virus in Cystic Fibrosis — A Review of the Literature

    Get PDF
    Life expectancy in Cystic Fibrosis (CF) has improved dramatically in the last few decades; this is very much due to the emergence of disease-modifying treatments, optimisation of nutritional status and the inception of specialist CF units. However, progressive obstructive lung disease characterised by chronic inflammation, bacterial colonisation and recurrent infections of the lung, resulting in irreversible pulmonary damage, remains the major cause of mortality in individuals with CF. Historically, bacterial infections are the major pathogens accounting for clinical deterioration in CF. More recently, there has been emerging evidence to support respiratory viruses being accountable for the colonisation of bacteria and progression of lung disease in CF. This chapter sought to provide an overview on the impact of respiratory viruses in CF lung disease, the interaction between viruses and bacteria, the preventative and therapeutic measures that are currently available for the management of viral lung disease in CF

    A comprehensive collection of systems biology data characterizing the host response to viral infection

    Get PDF
    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection

    C57BL/6J and C57BL/6NJ Mice Are Differentially Susceptible to Inflammation-Associated Disease Caused by Influenza A Virus

    Get PDF
    Influenza viruses cause seasonal epidemics and sporadic pandemics, and are a major burden on human health. To develop better countermeasures and improve influenza disease outcomes, a clearer understanding of influenza pathogenesis is necessary. Host genetic factors have emerged as potential regulators of human influenza disease susceptibility, and in the mouse model, genetic background has been clearly linked to influenza pathogenicity. Here, we show that C57BL/6J mice are significantly more susceptible to disease caused by a 2009 pandemic H1N1 virus, an H7N9 virus, and a highly pathogenic H5N1 influenza virus compared to the closely related substrain, C57BL/6NJ. Mechanistically, influenza virus infection in C57BL/6J mice results in earlier presentation of edema, increased immune cell infiltration, higher levels of inflammatory cytokines, greater tissue damage, and delayed activation of regenerative processes in infected lung tissues compared to C57BL/6NJ mice. These differences are not dependent on virus replication levels. Six genes with known coding region differences between C57BL/6J and C57BL/6NJ strains exhibit increased transcript levels in influenza virus-infected mouse lungs, suggesting potential contributions to regulation of disease susceptibility. This work uncovers a previously unappreciated difference in disease susceptibility between the closely related C57BL/6J and C57BL/6NJ mice, which may be exploited in future studies to identify host factors and/or specific genetic elements that regulate host-dependent inflammatory mechanisms involved in influenza virus pathogenicity

    The role of EGFR in influenza pathogenicity: Multiple network-based approaches to identify a key regulator of non-lethal infections

    Get PDF
    Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene’s involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections

    Characterization of the Hemagglutinin Cleaving Transmembrane Serine Proteases Matriptase and TMPRSS2

    Get PDF
    Influenza is one of the commonest infectious diseases affecting millions of people every year including 290,000 – 650,000 heavy casualties. Influenza viruses undergo constant genetic changes and every 10 – 50 years new influenza virus strains emerge that potentially cause a severe pandemic. In this modern interconnected world, experts believe the next influenza pandemic will be a “devastating global health event with far-reaching consequences” [1]. Novel effective anti-influenza drugs are in need. One strategy of influenza research is to focus on host-specific proteases that are essential for virus activation and spread. Trypsin-like serine proteases are crucial for influenza activation by mediating the cleavage of the viral surface glycoprotein HA and hence promoting the fusion potential of the virus. Therefore, their inhibition provides a promising therapeutic approach. The present work focused on the characterization of two relevant HA cleaving type-II transmembrane serine proteases matriptase and TMPRSS2. Chapter 3 and chapter 4 of this thesis engaged with the recombinant production of matriptase (chapter 3) in order to obtain a pure functional enzyme of high quality for a SAR study with novel monobasic (hence potentially bioavailable) matriptase inhibitors of the 3-amidinophenylalanine type (chapter 4). Adequate amounts of high-quality matriptase enzymes were isolated using a new expression system and in total 5 matriptase crystals were available at the end of this thesis for structural analysis. The matriptase inhibitor design in this thesis focused on matriptase-affine compounds with a fair selectivity profile against the blood coagulation enzymes thrombin and fXa. In total, 18 new monobasic and potentially bioavailable, as well as four new dibasic compounds of the 3-amidinophenylalanine types were tested. Based on the last published crystal structure of this inhibitor type in complex with matriptase from 2006 (PDB code 2GV6) docking was used as a structure-based virtual screening method for lead optimization of the compounds N-terminus. Selected compounds were suggested to interact with the carbonyl side chain of Gln175 of matriptase to achieve a higher affinity of matriptase compared to fXa. The 4-tert-butylureido-piperidine could be identified as suitable C-terminus in combination with 3-fluoro-4-hydroxymethyl biphenylsulphonyl N-terminally in order to obtain excellent selectivity over thrombin. The binding mode of this compound (compound 55) was crystallographically determined in complex with matriptase as well as trypsin. Trypsin proved as a suitable alternative to matriptase for detailed binding mode analysis of the compounds N-terminus. However, different preferences were detected for the C-terminus. Dibasic compounds showed higher matriptase affinity and selectivity in comparison with the monobasic analogues. However, the tested monobasic compounds were still decent matriptase inhibitors that are additionally suitable for cell culture and animal studies in their benzamidine prodrug forms, which are well established from related inhibitors of thrombin. In addition, selected monobasic as well as dibasic compounds demonstrated strong suppression of the replication of certain H9N2 influenza viruses in a matriptase-expressing MDCK II cell model. These matriptase inhibitors could be potential lead structures for the development of new drugs against H9 strains for influenza. TMPRSS2 is widely discussed for its role in influenza activation. With a TMPRSS2 dependancy of HA-activation of certain subtypes, the characterization of this protease is an important prerequisite for being available as a target for influenza drug design. However, only little is known about the physiological function of TMPRSS2 and no experimental structure data are available at the moment to enable a structure-based drug development. Therefore, chapter 5 of this thesis focused on the characterization of TMPRSS2 in order to develop a strategy for the isolation of proteolytically active TMPRSS2 from cell culture. Even though, no functional TMPRSS2 could be recovered at the end of this work some new structural characteristics of TMPRSS2 were identified as crucial for functionality insight the cell. In general, TMPRSS2 without the cytosolic part, the transmembrane domain and the LDLRA domain is able to undergo autocatalytically activation if an artificial signal peptide was added N-terminal to enable entry into the endoplasmic reticulum. The presence of the cysteine-rich SRCR domain and the presence of the disulfide chain that connects the SPD and the stem region after activation cleavage have been identified as crucial for activity. N-terminal truncation of TMPRSS2 did not result in obvious dislocation within the cell: as the full-length positive control truncated TMPRSS2 was exclusively found in cell compartments surrounding the nucleus in immunofluorescence experiments. However, a reduced proteolytic cleavage activity towards H3-HA in co-expression experiments has been observed and might be a result of dislocation, since truncated TMPRSS2 is not bound to the biomembrane anymore. In addition, TMPRSS2 has been identified as a potential substrate of matriptase in vitro, which suggests possible participation in several zymogen cascades

    Annotation of long non-coding RNAs expressed in Collaborative Cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts

    Get PDF
    The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb)

    Immunological studies of cold-adapted influenza vaccine viruses in mice

    Get PDF
    Cold-adapted (ca) live attenuated influenza vaccines (LAIVs) have been introduced as alternatives to existing inactivated influenza vaccines. The influenza A components of the FDA-approved ca LAIVs (Flumist®; Medimmune) have common internal genes derived from the donor strain A/Ann Arbor/6/60 ca and surface genes derived from current wild-type (wt) epidemic strains. The aim of this thesis was to investigate determinants of immunogenicity for reassortants of A/Ann Arbor/6/60 ca, using a range of immunological assays, including recently developed MHC tetramer techniques. From the study, the extent of viral replication in the respiratory tract of mice, the primary site of inoculation, was a key factor in determining ca vaccine immunogenicity. Replication was shown to be influenced by both viral surface Ags and the host MHC. The H3 ca reassortants CR6, CR18, CR29 and CR6-35* exhibited greater replication efficiency (as determined by their PFU:HAU ratios) than the H1 ca reassortants CR35 and CR6-35. The H3 ca reassortant CR6 caused a 3.79% loss in body weight but no losses were observed for the H1 ca reassortant CR35 and the ca H2N2 donor strain A/Ann Arbor/6/60 ca. Higher HI responses were detected after 3 weeks in groups infected with the H3 ca reassortant CR6 (GMT 80) than with the H1 reassortant CR35 (GMT 10) and the H2 ca donor strain A/Ann Arbor/6/60 ca (GMT 13). Recently developed techniques were used to evaluate specific T-cell response to ca LAIVs. Fluorescent-labelled tetramer is the key reagent for use in tetramer-based flow cytometry assays. The NP366-374 peptide of influenza A viruses comprises an immunodominant epitope that is highly conserved between subtypes. Tetramers developed for A/PR/8/34 (H1N1) were able to detect NP-specific cytotoxic T lymphocytes (CTLs) induced by A/Ann Arbor /6/60 ca (H2N2). An attempt to prepare the A/Ann Arbor/6/60 ca-specific-NP-tetramer is described. H-2Db monomers were successfully refolded with the peptide, but only 20% were able to form tetramers through biotin-streptavidin linkage, resulting in a poor capacity to stain. By contrast, an IFN-γ ICC assay developed in parallel demonstrated that peptide NP366-374 was able to restimulate A/Ann Arbor/6/60 NP ca-specific CTLs and secrete IFN-γ when tested in vitro. Specific-B and T cell responses induced in the lungs in response to infection by ca reassortants exhibited great variability that was determined by the growth characteristics of different viruses. Type I (CTL) responses were induced by low yielding ca reassortants, such as CR35 (H1N1). Viruses with enhanced growth characteristics, such as CR6 (H3N2), produced higher Type II (HA-specific Ab) responses. In addition, host factors, such as MHC type, were found to play an important role in responses to the same viruses. Susceptible mouse strains, such as C57BL/6, showed higher CTL but lower serum Ab responses than more resistant strains, such as BALB/c. Throughout this PhD project, a fine balance between the humoral and CMI, local and systemic immune responses induced by ca LAIVs was demonstrated. The need to assess local immune responses, in addition to serum antibody levels, for the evaluation of vaccine efficacy was an important conclusion of the thesis
    • …
    corecore