249 research outputs found

    Wireless Interference Identification with Convolutional Neural Networks

    Full text link
    The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB

    Learning Robust Radio Frequency Fingerprints Using Deep Convolutional Neural Networks

    Get PDF
    Radio Frequency Fingerprinting (RFF) techniques, which attribute uniquely identifiable signal distortions to emitters via Machine Learning (ML) classifiers, are limited by fingerprint variability under different operational conditions. First, this work studied the effect of frequency channel for typical RFF techniques. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models leads to deterioration in MCC to under 0.05 (random guess), indicating that single-channel models are inadequate for realistic operation. Second, this work presented a novel way of studying fingerprint variability through Fingerprint Extraction through Distortion Reconstruction (FEDR), a neural network-based approach for quantifying signal distortions in a relative distortion latent space. Coupled with a Dense network, FEDR fingerprints were evaluated against common RFF techniques for up to 100 unseen classes, where FEDR achieved best performance with MCC ranging from 0.945 (5 classes) to 0.746 (100 classes), using 73% fewer training parameters than the next-best technique

    Power Ramped-up Preamble RF Fingerprints of Wireless Transmitters

    Get PDF
    In this paper, we propose a novel kind of RF fingerprints (RFF) with better discriminability than typical RFF for identifying preamble-based wireless transmitters. First, the equivalent model of RFF identification system is built. Then, the typical RFF are analyzed with the built model and the novel RFF, which is transformed from preamble signal when its power is ramped up, is presented. Finally, the discriminability of the proposed RFF and typical RFF is experimentally evaluated with Wi-Fi 802.11b devices. The proposed RFF can be integrated into fusion identification of preamble-based wireless devices with multiple RFF

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    The impact of Rayleigh fading channel effects on the RF-DNA fingerprinting process

    Get PDF
    The Internet of Things (IoT) consists of many electronic and electromechanical devices connected to the Internet. It is estimated that the number of connected IoT devices will be between 20 and 50 billion by the year 2020. The need for mechanisms to secure IoT networks will increase dramatically as 70% of the edge devices have no encryption. Previous research has proposed RF-DNA fingerprinting to provide wireless network access security through the exploitation of PHY layer features. RF-DNA fingerprinting takes advantage of unique and distinct characteristics that unintentionally occur within a given radio’s transmit chain during waveform generation. In this work, the application of RF-DNA fingerprinting is extended by developing a Nelder-Mead-based algorithm that estimates the coefficients of an indoor Rayleigh fading channel. The performance of the Nelder-Mead estimator is compared to the Least Square estimator and is assessed with degrading signal-to-noise ratio. The Rayleigh channel coefficients set estimated by the Nelder-Mead estimator is used to remove the multipath channel effects from the radio signal. The resulting channel-compensated signal is the region where the RF-DNA fingerprints are generated and classified. For a signal-to-noise ratio greater than 21 decibels, an average percent correct classification of more than 95% was achieved in a two-reflector channel

    Signals of Opportunity for Positioning Purposes

    Get PDF
    O ver the last years, location-based services (LBS) have become popular due to the emergence of smartphones with capabilities of positioning their user’s location on Earth at unprecedented speed and convenience. Behind such feat are the technological advances in global navigation satellite systems (GNSS), such as Galileo, Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS), Global Positioning Service (GPS) and Beidou. The easiness of smartphones and the improvement of positioning technology has driven LBS to be at the core of many business models. Some of these business models rely on the user’s location to pick him up on a car, relinquish a meal to him, offer insights on sports performance, locate items to be picked up on a warehouse, among many others.While LBS are driving the need to continuously locate the user at higher degrees of accuracy and across any environment, be it in a city park, an urban canyon or inside a corporate office, some of these environments pose a challenge for GNSS. Indoor environments are particularly challenging for GNSS due to the attenuation and strong multipath imposed by walls and building materials. Such challenges and difficulties in signal acquisition have led to the development of solutions and technologies to improve positioning in indoor environments.While there are several commercial systems available to fulfill the needs of most LBS in indoor environments, most of these are not feasible to deploy at a global scale due to their infrastructure costs. Hence, several solutions have sought to build upon existing infrastructure to provide positioning information.Building upon existing infrastructure is what leads to the main topic of this thesis, the concept of signals of opportunity (SoO). A SoO is any wireless signal that can be exploited for a positioning purpose despite its initial design seeking to fulfill a different purpose. A few examples of these signals are IEEE 802.11 signals, commonly known as WiFi, Bluetooth, digital video broadcasting - terrestrial (DVB-T) and many of the cellular signals, such as long-term evolution (LTE), universal mobile telecommunications system (UMTS) and global mobile system (GSM).The goal of this thesis is to address various challenges related to SoO for positioning. From the identification of SoO at the physical layer, how to merge them at the algorithmic level and how to put them in use for a cognitive positioning system (CPS)

    Efficient Radiometric Signature Methods for Cognitive Radio Devices

    Get PDF
    This thesis presents the first comprehensive study and new methods for radiometric fingerprinting of the Cognitive Radio (CR) devices. The scope of the currently available radio identification techniques is limited to a single radio adjustment. Yet, the variable nature of the CR with multiple levels of parameters and adjustments renders the radiometric fingerprinting much more complex. We introduce a new method for radiometric fingerprinting that detects the unique variations in the hardware of the reconfigurable radio by passively monitoring the radio packets. Several individual identifiers are used for extracting the unique physical characteristics of the radio, including the frequency offset, modulated phase offset, in-phase/quadrature-phase offset from the origin, and magnitude. Our method provides stable and robust identification by developing individual identifiers (classifiers) that may each be weak (i.e., incurring a high prediction error) but their committee can provide a strong classification technique. Weighted voting method is used for combining the classifiers. Our hardware implementation and experimental evaluations over multiple radios demonstrate that our weighted voting approach can identify the radios with an average of 97.7% detection probability and an average of 2.3% probability of false alarm after testing only 5 frames. The probability of detection and probability of false alarms both rapidly improve by increasing the number of test frames
    corecore