44,069 research outputs found

    Physical Conditions in Quasar Outflows: VLT Observations of QSO 2359-1241

    Full text link
    We analyze the physical conditions of the outflow seen in QSO 2359-1241 (NVSS J235953-124148), based on high resolution spectroscopic VLT observations. This object was previously studied using Keck/HIRES data. The main improvement over the HIRES results is our ability to accurately determine the number density of the outflow. For the major absorption component, level population from five different Fe II excited level yields n_H=10^4.4 cm^-3 with less than 20% scatter. We find that the Fe ii absorption arises from a region with roughly constant conditions and temperature greater than 9000 K, before the ionization front where temperature and electron density drop. Further, we model the observed spectra and investigate the effects of varying gas metalicities and the spectral energy distribution of the incident ionizing radiation field. The accurately measured column densities allow us to determine the ionization parameter log(U) = -2.4 and total column density of the outflow (log(N_H) = 20.6 cm^-2). Combined with the number density finding, these are stepping stones towards determining the mass flux and kinetic luminosity of the outflow, and therefore its importance to AGN feedback processes.Comment: 21 pages, 3 figures (accepted for publication in the ApJ

    The JCMT Spectral Legacy Survey: physical structure of the molecular envelope of the high-mass protostar AFGL2591

    Get PDF
    The understanding of the formation process of massive stars (>8 Msun) is limited, due to theoretical complications and observational challenges. We investigate the physical structure of the large-scale (~10^4-10^5 AU) molecular envelope of the high-mass protostar AFGL2591 using spectral imaging in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160 spectral features, this paper uses the 35 that are spatially resolved. The observed spatial distributions of a selection of six species are compared with radiative transfer models based on a static spherically symmetric structure, a dynamic spherical structure, and a static flattened structure. The maps of CO and its isotopic variations exhibit elongated geometries on scales of ~100", and smaller scale substructure is found in maps of N2H+, o-H2CO, CS, SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all molecular lines presented here, except SO, SO2, and H2CO. We find two emission peaks in warm (Eup~200K) methanol separated by 12", indicative of a secondary heating source in the envelope. The spherical models are able to explain the distribution of emission for the optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and CS, nor for the optically thin C17O. The introduction of velocity structure mitigates the optical depth effects, but does not fully explain the observations, especially in the spectral dimension. A static flattened envelope viewed at a small inclination angle does slightly better. We conclude that a geometry of the envelope other than an isotropic static sphere is needed to circumvent line optical depth effects. We propose that this could be achieved in envelope models with an outflow cavity and/or inhomogeneous structure at scales smaller than ~10^4 AU. The picture of inhomogeneity is supported by observed substructure in at least six species.Comment: 17 pages; accepted for publication in A&
    • …
    corecore