111 research outputs found

    Specializing distributional vectors of allwords for lexical entailment

    Get PDF
    Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g., WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first postprocessing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymyhypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feedforward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymyhypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201

    Explicit retrofitting of distributional word vectors

    Get PDF
    Semantic specialization of distributional word vectors, referred to as retrofitting, is a process of fine-tuning word vectors using external lexical knowledge in order to better embed some semantic relation. Existing retrofitting models integrate linguistic constraints directly into learning objectives and, consequently, specialize only the vectors of words from the constraints. In this work, in contrast, we transform external lexico-semantic relations into training examples which we use to learn an explicit retrofitting model (ER). The ER model allows us to learn a global specialization function and specialize the vectors of words unobserved in the training data as well. We report large gains over original distributional vector spaces in (1) intrinsic word similarity evaluation and on (2) two downstream tasks -- lexical simplification and dialog state tracking. Finally, we also successfully specialize vector spaces of new languages (i.e., unseen in the training data) by coupling ER with shared multilingual distributional vector spaces

    Discriminating between lexico-semantic relations with the specialization tensor model

    Get PDF
    We present a simple and effective feed-forward neural architecture for discriminating between lexico-semantic relations (synonymy, antonymy, hypernymy, and meronymy). Our Specialization Tensor Model (STM) simultaneously produces multiple different specializations of input distributional word vectors, tailored for predicting lexico-semantic relations for word pairs. STM outperforms more complex state-of-the-art architectures on two benchmark datasets and exhibits stable performance across languages. We also show that, if coupled with a lingual distributional space, the proposed model can transfer the prediction of lexico-semantic relations to a resource-lean target language without any training data

    Dual tensor model for detecting asymmetric lexico-semantic relations

    Full text link

    Cross-lingual semantic specialization via lexical relation induction

    Get PDF
    Semantic specialization integrates structured linguistic knowledge from external resources (such as lexical relations in WordNet) into pretrained distributional vectors in the form of constraints. However, this technique cannot be leveraged in many languages, because their structured external resources are typically incomplete or non-existent. To bridge this gap, we propose a novel method that transfers specialization from a resource-rich source language (English) to virtually any target language. Our specialization transfer comprises two crucial steps: 1) Inducing noisy constraints in the target language through automatic word translation; and 2) Filtering the noisy constraints via a state-of-the-art relation prediction model trained on the source language constraints. This allows us to specialize any set of distributional vectors in the target language with the refined constraints. We prove the effectiveness of our method through intrinsic word similarity evaluation in 8 languages, and with 3 downstream tasks in 5 languages: lexical simplification, dialog state tracking, and semantic textual similarity. The gains over the previous state-of-art specialization methods are substantial and consistent across languages. Our results also suggest that the transfer method is effective even for lexically distant source-target language pairs. Finally, as a by-product, our method produces lists of WordNet-style lexical relations in resource-poor languages
    • …
    corecore