61,439 research outputs found

    Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing

    Get PDF
    We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence'' defined in terms of the densities of homomorphisms from the graphs of the sequence into small graphs; and convergence in a suitably defined metric. In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs, and for graphs with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemeredi partitions, sampling and testing of large graphs.Comment: 57 pages. See also http://research.microsoft.com/~borgs/. This version differs from an earlier version from May 2006 in the organization of the sections, but is otherwise almost identica

    Limits of dense graph sequences

    Full text link
    We show that if a sequence of dense graphs has the property that for every fixed graph F, the density of copies of F in these graphs tends to a limit, then there is a natural ``limit object'', namely a symmetric measurable 2-variable function on [0,1]. This limit object determines all the limits of subgraph densities. We also show that the graph parameters obtained as limits of subgraph densities can be characterized by ``reflection positivity'', semidefiniteness of an associated matrix. Conversely, every such function arises as a limit object. Along the lines we introduce a rather general model of random graphs, which seems to be interesting on its own right.Comment: 27 pages; added extension of result (Sept 22, 2004
    • …
    corecore