921 research outputs found

    Special section with selected papers from PODC 2010

    Get PDF

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(logn)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8klog(k+1)1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer k1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~()\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ω~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(logn)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    Message Reduction in the LOCAL Model Is a Free Lunch

    Get PDF
    A new spanner construction algorithm is presented, working under the LOCAL model with unique edge IDs. Given an n-node communication graph, a spanner with a constant stretch and O(n^{1 + epsilon}) edges (for an arbitrarily small constant epsilon > 0) is constructed in a constant number of rounds sending O(n^{1 + epsilon}) messages whp. Consequently, we conclude that every t-round LOCAL algorithm can be transformed into an O(t)-round LOCAL algorithm that sends O(t * n^{1 + epsilon}) messages whp. This improves upon all previous message-reduction schemes for LOCAL algorithms that incur a log^{Omega (1)} n blow-up of the round complexity

    The Price of Anarchy for Network Formation in an Adversary Model

    Full text link
    We study network formation with n players and link cost \alpha > 0. After the network is built, an adversary randomly deletes one link according to a certain probability distribution. Cost for player v incorporates the expected number of players to which v will become disconnected. We show existence of equilibria and a price of stability of 1+o(1) under moderate assumptions on the adversary and n \geq 9. As the main result, we prove bounds on the price of anarchy for two special adversaries: one removes a link chosen uniformly at random, while the other removes a link that causes a maximum number of player pairs to be separated. For unilateral link formation we show a bound of O(1) on the price of anarchy for both adversaries, the constant being bounded by 10+o(1) and 8+o(1), respectively. For bilateral link formation we show O(1+\sqrt{n/\alpha}) for one adversary (if \alpha > 1/2), and \Theta(n) for the other (if \alpha > 2 considered constant and n \geq 9). The latter is the worst that can happen for any adversary in this model (if \alpha = \Omega(1)). This points out substantial differences between unilateral and bilateral link formation

    Towards a complexity theory for the congested clique

    Full text link
    The congested clique model of distributed computing has been receiving attention as a model for densely connected distributed systems. While there has been significant progress on the side of upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it is now know that proving explicit congested clique lower bounds is as difficult as proving circuit lower bounds. In this work, we use various more traditional complexity-theoretic tools to build a clearer picture of the complexity landscape of the congested clique: -- Nondeterminism and beyond: We introduce the nondeterministic congested clique model (analogous to NP) and show that there is a natural canonical problem family that captures all problems solvable in constant time with nondeterministic algorithms. We further generalise these notions by introducing the constant-round decision hierarchy (analogous to the polynomial hierarchy). -- Non-constructive lower bounds: We lift the prior non-uniform counting arguments to a general technique for proving non-constructive uniform lower bounds for the congested clique. In particular, we prove a time hierarchy theorem for the congested clique, showing that there are decision problems of essentially all complexities, both in the deterministic and nondeterministic settings. -- Fine-grained complexity: We map out relationships between various natural problems in the congested clique model, arguing that a reduction-based complexity theory currently gives us a fairly good picture of the complexity landscape of the congested clique
    corecore